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1. Background: Review of Basic Concepts

This fingl report 1llustrates the results of a three-years research
pragram on Quantum Chaos. when our program was started this subject
was still in a native stage, dominated by the pioneering work of a
restricted number of scientists. By now, instead, it has grown into a
most active field of research, and keeps drawing ncreasing attention by
scientists working in widely different areas, ranging from pure
theoretical to experimental ones, International conferences and
workshops on Quantum Chaos have been held, and others are being
announced, witnessing the liveliness and the interest of the topic.

Curiously enough, despite this great development the very definition
of Quantum Chaos is still a controversial point. A very neutral statement
is that gquantum chaos is concerned with the properties of quantum
systems that are chaotic in the classical limit. In order to get a more
precise formulation of the problems involved and to qive a clear
exposition of our contributions, we shall first review some basic
concepts and keywords.

1.1 Classical Chans.

Chaos is today a protagomist in all problems that can be treated by
classical mechanics. The appearance of chaas 15 Connected with an
extreme type of instability that often appears in nonlinear classical
systems, Chaotic systems are in many senses the very Gpposite af
Integrable systems, The arbits in phase space ot one inteqgrable system
are bound to smooth surfaces whose dimension equals the number of
freedoms, called invariant tori, For this reason, integrable systems are
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very stable; 3 small error tn specifiying the wtial data involves an error
in predicting the state at a later time that grows linearly with time, so
that Timte-precision algorithms allow for a reliable computation of
oroits. Integrable systems are well known, being the cole class of
nonlinear systems that are amenable to anaiytical solution.

Generic Hamiltonian systems can be regarded as perturbatiane of
integrable systems - i.e., their Hamiitonian is obtained by adding some
correction to an integrable Hamiltonian. It is now known that in this
case some orbits are still confined (and densely fill) on some invariant
surfaces that can be looked upon as distorted remnants of the supply of
nvariant ton that is available in the unperturbed case. The celebrated
KAM theorem characterizes this surviving set of ‘regular’ orbits, that
becomes narrower as the perturbation strength-or just the energy, in the
conservative case-increases.

Chaos became a keyword in classical mechanics when the behaviour of
the other orbits - i.e., those that are no longer confined to smaooth
“tori"-was studied in sorme detail. Indeed, i1t turned out that these orbits
are usually exponentially unstable - i.e.. errors in the initial data
propagates exponentially in time. Tms makes hopeless the prediction of
individual orbits by finite precision algornithms. [f  the state of the
systern moving along a typical chaotic orbit 1s recorded with a finite
precision at 3 prescribed sequence of instants, one gets a string of data
that 15 indistinguishable from a random string - t.e., from a string of
numbers generated by a random device. Analysis of single orbits is
therefore rmeaningless; instead, the behaviour of ensembles of orbits
turns out to be describable, in statistical terms, and it 1s found that the
ensemble evolution 15, 1n 3 suitable approximation, a diffusion process.
¥hereas regular arbits lie on invariant tor1 and are therefore contined
forever to @ negligible region of phase space chaoctic orbits have a
tendency to explore the whole available phage space 1n 2 diffusive way.
Bounds on ths pervasive behaviour are however posed by the survival of
some tori, that can substantially slow dawn ar even stop the diffusion,

f.2 Model systerns - Erhiards and the kicked Rotator

The onset of chaos e Harmltoman sygsterns 15 an moast ¢ase:

unambiquousty detected by numericsl simulation, but the thearstic sl



analys1s of ths process 13 still far from being complete, Far this
reason, in order to understand at least the qualitative features of
chactic dynamics it has proved very useful to consider simplified
models. Not being modelled after any actual phenomenological situation,
they are abstract constructions; yet, they exhibit the essential features
of chaos, bare of complications that are usually superimposed in
realistic cases, A first example is provided by billiards, i.e., particles
bouncing elastically inside suitable plane regions. Rigorous mathematical
results have shown that, if the boundary of the billiard is suitably
shaped, then the simple Hamiltonian system so defined displays strongly
chaotic properties. Unlike generic Hamiltonian systems in which both
chaotic and regular orbits coexist, the latter becoming negligible oniy by
suitably increasing the energy, billiards are fully chaotic - i.e., regular
orbits have zero measure - at any energy.

As we shall emphasize later, the most impressive phenomenological
manifestations of chaos are offered by Hamiltonian systems subject to
external perturbations periodic in time. Within this class, one model
system dominates the scene: the §-kicked rotator, also called standard,
or Chirikov’s map, by more mathematically oriented authors. This is the
1-dim. Hamiitoman system described by the time-dependent Hamilionian

H= P2/2 + kcos 8 3 8(t - nT); o< <20
n

Physically, it is a pendulum whose weight is “turned up’ in an impulsive,
§-like way, at reqularly operated instants of time, It can obviously be
looked upon, as a perturbation of a free rotator (k=0) and indeed, the
whole scenery of KAM theory 1s here realized. The object of interest
here is the discrete-time orbit p(nT), 8(nT), which, 1n the unperturbed
case is generically bound and densely fills a regular curve. As k ig
increased, the set of ’regular’ orbits shrinks and, for kT>1, almost all
orbits become chaotic. A remarkable indication of the stochatic nature
of the motion in this case is offered by the behaviour of the Kinetic
energy T(nT)= <(P4{nT)/2> averaged over the phase &: this grows In a
diffusive way ~ Dn with D ~ (kT)2/2.



The appearance of irregular ortits may dramatically change the
phenomenoclogical behaviour of a Qiven system. [ndeed, a major impulse
to the study of chactic dynamics was given by the necessity of
predicting the precize conditions under which dangerous inctabilities
develop 1 physical situations that are amenable to 3 classical
description, such as, e.g., beams of accelerated particles or confined
plasmas., A vivid illustration of the effect of chaos on real physics 13
provided by the very problem that was the most important part of the
research described here : an hydrogen atom 1n an external microvwave
tield, Deferring a detatled analysis to a later section, we shall qive
here a qualitative explanation why chaos is essential in the classical
behaviour of such an atom. The unperturbed atom is obviously an
integrable system. As soon as the external perturbation is turned on (the
microwave field), some of the orbits become irregular and start
wandering away. For not too large perturbation strength, residual
invariant tori persist that prevent this diffusion from leaving the 'bound’
state subspace of the whole phase space. However, for any given initial
(bound) state of the atom, a value of the external field will be found, tor
which the orbit leaving from this st:le will no fonger meet any such
impediment and will therefore diffuse away until the atom ionizes. This
simple picture leads to predict that for atoms prepared in a fixed initial
state under a field of fized frequency there is a threshold in the field
strength, across which the ionization rate changes abruptly due to the
onset of unbounded diffusion.

1.4 Quantum Lirmitations to Classical Chaos in Conservative Systems.
Level Statistics,

wWhy should 3 quantum physicist care about classical chaosy In the
light of the above sketched picture of the rcrowave icrzation of
hydrogen atoms, this question has at least on2 immediate answer
because just the tatlure of certain classical aredictyons about the
nyarogen atams was ane starting pmnt an the einication ar quantum
mechamcs. Nevertheless, on account of the correspondence principle, one
can predict that by going up to sufficiently togh quantum numbers




quantum and  classical predictions will agree. It was however apparent
stnce  the beginning of studies on  chaotic  dynamics that the
correspondence between a quantum systern and 1ts ciassical iirmit may
have some subtle aspect when the latter 1s chaotic. For example, a
chaotic conservative classical system with a bounded configuration
space (such as a billiard) display a highly non-recurrent behaviour: by
this we mean that, even though it comes infinitely often arbitrarily
close to its initial state (Poincare recurrence), nevertheless there is no
upper bound on the return times, that will take arbitrarily large values
as the system moves along a given orbit. The gquantum analog of any such
systern will have a pure point energy spectrum; the quanturn evoiution
will then be quasi-periodic, hence recurrent. On the other hand, the
correspondence principle requires that the recurrent quantum behaviour
goes into the highly non recurrent classical one as h -> 0l

An obvious way out to this apparent contradiction is that recurrence
{or non-recurrence} is a long-time property, and the classical limit h->0
can be non uniform in time. In other wards, for a given quantum state
which is quasi-classical one can expect at best that quantum dynamics
looks like the classical over just a Tfinite time scale t{h) so that
t(h)->c0 as H->0. One has then a sort of chaos confined to a bounded
time scale, so that “Transient Chaos™ or "Pseudochaos”™ appear mare
appropriate expressions.

Despite this severe limitation placed by quantum mechanics on
classical chaos in the conservative case - the nanconservative case will
be discussed below - there are still reasons why quantized conservative
chaotic systems should be made the object of a careful investigation.
Integrable systems played a central role in the eariy stages of quantum
mechanics. Indeed, the Bohr-Sommerfeld quantization procedure 15 only
applicable to integrable systerms.

Inctead, the present-day form of gquantum mechsanics does no longer
suffer from such 3 limitation, and we can safely gquantize any
conservative Hamiltonian system, regardless of its inteqrable or chaotic
nature. Nevertheless, sermiclassical quantization rules still play an
important role. in that they are often the only reasonable way to get
quantitative infarmations about the higher part of the enerqy spectrum.
These rules are today rigorously deduced trom the Schroedinger equatian
in the form of the EWBK rules. Again, tms theory warks only under the
exphcit assumption that the system at hand has an integrable clacsical




hontt A natural problers v then whethar sermclasacal methods can bie
u=ed alsa in the nan-integrable case n order to get infromation about
the serniciassical part of the spectrum.

It was suggested by Berry [1] that the integrable or non-integrabie
character of classical dynamics is mirrored by the statistical type of
the corresponding energy spectra. Given 3 spectrum whatcoever, one can
define the associated level spacing distribution function P(s,E) as
follows. Given 3 A4=0, one takes only those eigenvalues E (h) that lie

between E-4 and E+A and forms the string ¢, of the spacings £, - E,

measured 1n units ot their average value., These numbers 3 viill be

dictributed accarding to an hystogram HN(s.h.E} qgiving, for any = the
relative frequency of occurence, within the string, of $pacings betweer s
angd s+ds, Letting then h->o, N(3,hE) would tend to a it P(s,E)

On account of nurnercal computations and analytical arguments, it 1s
currently assumed that, if the system hac an integrable classical limit,
P(s,E1 is given by the Poisson distribution e, Instead, if the system has
a chaotic classical himit, P(s) should be the same as the Wigner
distribution valid for eigenvalues of random matrices in the Gaussian
orthoegonal ensemble, that 15 given almost exactly by

Fic) = (M/2)S expl-Tsd/4)

The maost obviaus difference between these two forms of P{s) 13 that,
in the latter, one has level reaulsion - 1.e,, the frequency of small
spacings 15 vamstongly srnall,

1.5 Quanturn Chaas Tor Peniadically Perturbed Hamiltoman Systems,

behaviour of gquantum and 01332103} conservative systems n the presence
of chaos cannot be expected to be the same. However, the physically
miost interesting cases such as the H-atam of sec, 1.3, do not belong to
thi= class, because thewr Hamiltanian 12 perindic in time,

I that caze, quanturm dynammcs v oo donder detined Gy an energy
spectrurmn, DUt rather by the quadi-enengy ule) <pectram, wWile in The
conseryative (ase the energqy zpectrurm was dnown to be pure pomnt, there




all cases: the question of persistence of chans or of some of 1ts effects
In quantum mechanics 1n this nonconservative case must then tie started
atresh,

The first results were abtained by Casati et al. (4] who subjected the
quantum version of the & kicked rotor sketched in sec. 1.2 to a numerica)
analysis,with the following remarkable results. It will be recalled that
the character of the classical motion is defined by the guantity K=kT. In
the quantum case, the dynarmics depends on two parameters kq:kﬁ—‘ and
Tq:Tﬁ. I1 Ty 1s a rational multiple of 41 (T = 4n m/n, m, n integers) the
quantum rotor behaves resonantly, and 1ts average Kinetic energy
E()=<g(t) |- (h2/2)02/d82|¢(t)> ncreases with fime according to an
asymptotically tZ Yaw. This resonance has no classical analog and 15 not
therefore related to classical chaos. Therefore, the cearch for quantum
chaos must resort to irrational values of f.,4n‘)"Tq. The response of
computer experiments was that £Ct) follows the classical diffusive law
El)«t only up to some time tB, after which 1t enters a steady

nscillatory state. In other words, according to numerical experniments
one has a quantum suppression of chaotic giffusion,

1.6 Relevance of Classical Analisys to the Problem of Microwave
lahization

The other nonconservative system discussed in this report - the
H-3tom in a3 microwave figld - had never been subjected to quantum
analisys, neither theoretical nor computational, up toc the start of our
program. HMevertheless, it presented a umque occaman to check the
possible survival of  chaohic effects n quantum mecharmcs, because
taboratory experiments on microwave aoamzation Tor highly exiited
H-atarnz had been performed since 1974 by Bayfield and Koch, (12] wha
cucceeded in exposing 3 relevant jonization for low  fields  and
rrequencies well below the 1-photon threshald. No satisractory quantum
N3bEs was gvatlable tar this phenamenan, Atter the work ot Jenten
[19,20] the 1des took place, that quantitative predictions in agreemert
with experiments rght be provided by 3 clacsical theory  ndesd,
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etpEbiroents Carried aut n parallel with C1lazsical anabyits gave an
uversll watisfactory response. According to such results, gquantum
rmechames does ndeed Tollow classical mechanics =0 closeiy, 35 fo
repradue even chaetic eftects,

2, Statement of Problems

The rapid overview of the state of the art we gave in the previous
sectian should have put n ewvidence that current  protlerns i Quantum
Zhaos pelong 1o two main areas: those avolving the spectral properties
of conservative systerns and those investigating the dynarmics of
externally perturbed systems.

In ths report we shall present 3 number of contmibutions we have
given to both fields,

2.1 The conservative case

Our starting point here was Berry's hypothesis, that the statistics of
energy levels should be essentislly different in the inteqrable and in the
chaotic case. Numerical work ty Bahigas and other authors [1] supports
the generaily accepted conclusion, that the level statistics for 2
quanturn system which 15 chaotic wn the classical Nirat 15 well descnbed
by random matrix theory: in particular, under the assumption of time
reversal wvanance one can assume that rluctuation properties in the
spectrum  will obey the same statistics as n the case of random
matrices in the so called Gaussian Qrthogonal ensemble. This contention
was  tested, by analyzing Clstoooarder”  statictics- el statistics)
proparties anwelving par correlations between different lewvels, such 33
the spacing distribution Pls), and also higher arder statistics, invalving
multiple correlations, such 33 the &-3 statisitcs to be defined later,
Therefore, chaotic systems display 4 remarksble universality in their
apectral statistics,

Paothers any uriversal statistics tar the aintegrable case’ Barly resyits
suggested  ane affirmative gnswer: ndeed, BEercy gave an argument
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accarding te which  ‘Qenenic’ antegrable  systems  have 3 Porsson
distribution of spacings. On the grounds of this argument it has been
conjectured that the rluctuation properties or the ‘integrable’ spectrum
should pe the <ame 35 for 3 Poisson process. According to this
conjecture, the enerqy levels of an integrable system, despite their
predictability by more or less simple semiclassical rules, should make
up 3 completely random sequence!

Even though this conjecture was supported by numerical results
insafar as the level spacing distribution was nvolved, there was neither
theoretical nor numerical evidence that also higher order statistics
should be Foisson-like. Therefore, we posed the Tatlowing problem:
t0 analyze mgher order statistical properties - in particuiar, the &-3
statistics ~ of the sequence of energy levels of an integrable system, in
order to check whether Pomsson statistics 1s still obeyed.

2.2 The Time Dependent Case

Our current understanding or the interaction between matter and
radiation s provided by quantum mechanics, the development ot which
was indeed prompted by the incapability of classical mechanics to
account for the response of microsystems to radiation fields. In simple
cases, 3 sufficient approximation for the behaviour of an atom or 3
molecule to an external electromagnetic field can be obtaned by
considering the latter as a classical field; in these cases, the quantum
dynamics is described by a time dependent Schroedinger equation,

when the intensity or the rields 1s suificiently smatl, this can be
handled by time-dependent perturbation theory, that leads to describe
the interaction with radiation in terms of rmultiphoton processes.
However, the present state of phyz:ical research often confronts us with
sttuations an o which it 13 important to predict the response of atoms or
molecules to intense Nelds; mareaver, experimental results indicate that
the dynamics 1n such cases tnay be qualitativeiy very different than one
rould guess an the grounds of perturbatively based intuitions. A typical
example 15 Bayneld and boch’s experunent, which exposed strang
WMMZation i a situation an o whch = oo photans waould be required,

In the absence of 3 method whatsoever, by which the Schroedinger



eQuUAtion Cate be at least approviraately solwed o the large tields
required, the best ane can do in order to get some theoretical indication
15 qust coming back to classical mechanics, and indeed tn physically
releyant cases suCh as microwave 1onization ot hydrogen atom in an
external field shows that a chactic threshold exist. For field strength
exceediny this threshold, a qualitative change in the dynamice occurs,
that leads to intense 1omization due to a diffusive-like motion of the
electron 1n the external field. Numerical simulation of the classical
madel 15 easily fessible, and a partial corparison of numerical data
yotten in this way with results of experiments on real atoms has shown
a certain deqgree of agreement. This Tact seems to indicate that wn i
seMiclassical reqime, the predictions of ©1assical chaotic dynamics are
essentially respected by quantum dynamics. Shall we conclude that
rlazsical chaos n time-dependent problems is basically surviving
quantization? Certainly not; and the reason is that we know of at Jeast
ane quantum system - the S-kicked rotator - in which the fully
developed chaos of the classical model is completely suppressed. what
are then the reazons why quantum mechanics reacts so differentiy to
classical chaos n these two cases? Answering this question 15 an
ecsential task, DeCause the existence at 3 quantum reqime {ying beyond
the perturbative regirme 1n which the motion has some ‘diffusive’
features would opern a new figld of immense potential interest. We
threfore need sorme theary that may be able to set precise quantitative
conditions for the applicability of semiclassical approximations when
the classical motion 19 chaatic. The follawing program should ther be
fulfilled:

1Y T busld a symple madel for 3 H atom 1n a microwave field, that is
amenatle to bath Classical and quantum solution by computer stmulation
2 to compare the classical and guantum motion in different parameter
reqians, ranging from extreme semiclazzicsl toopure quanturn anes
arder to 333055 the modinications ymposed by quantum mechamces on the
claceical chantic behaviour

) todentify under what canditions these madifications take the form
of 3 complete suppression of classical chaotic effects,



I. demiclassical Theory of Electron Excitation.

3.1. Classical Dynamics ot Electron Excitation

In this szection we will develop the classical theory of the
gxcitation of an hydrogen atom in 3 linearly polarzed monachromatic
etectric field.

Here and in the following we will use atomic units. in which the
Hamiltonian takes the Torm:

H= P¢/2 - 1/r + ¢7 coswt (1a)

where ¢ and w are the field strength and frequency respectively and
the z-coordinate is measured along the direction of the external field.
The classical dynamics associated with (13) is conveniently studied in
parabolic coordinates since the unperturbed dynamics is separable in
these coordinates. Accordingly, action-angle variables ( ny, n,, m, Ay,
A2,$) can be introduced /307, 1n which the Hamiltoman takes the torm:

Hz - 1/2n% + €2 { ny, ny, m, Ay, Ap) €03 ot ;
(1b}
n=riy + ny + [ ml.

Owing to axial symmetry, m {(which 1s the z-component of the
angular  momentum} 1S an integral of the mation; theretore, (1)
describes an essentialiy Z-dimensional model.

The function = {ny, Ny, M, 5y, %0 can be expanded in a double Fourier
<eries in the angle variables A, Ay

2= 34 4y Ty (s Mz M) e ke ay e ko Ak (1c)

The coefficients 2 bk, AN te round as shawn n Appendix [, and are

Jiven by/ 15/
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Here .J, are Bessel functions of the first kind and &', their derivates.
The depandence of 2 by by O Ry Mg, DS embiadied in the parameters
Hqs Hey Which are detined by

Wy s W ny s [m] e {18}

According to standard semictassical approximation theory /247,
%y kg give semiclassical values of dipafe matnx elements  for
transitions Ny, -> Ny = My + kg 5. The element 2, o, which s Just
the average ot 2 aver the unperturbed torus labelied oy ny , ny . M,
yields the standard quantum mechanical expression for tie hinear Stark
effect.

If the electron is initiafly in an "almost one-dimensional” state, te,,
in a state with ny>> ns ny>>m, then in (1a-fe} we can assume uy=1,

U, = O. In  that case, the dynamics will be descrbed in Tirst
approximation by the one-dimensional Hamiltoman

H=- 14210 +¢n?cos wt [.’n"? -2 :k Ay (k) vl o L,-\] (21

which is just the Hamiltemian, in action-angie wvartables. for an
electron moving along the positive z anss 17,204t

Hozpssl- 1ir+ ez cos wt . NEX ial

We o start our anaigsts with ths sirnphified Hamiltoman (200 Later an



ihs zectian we shall J1scuss the vahidity of this one-dimensonal
apprazimation. e, we shal discuss to what extent the one-dinensional
hamiitonan (2) 13 adequate n order to describe the evolution ov quas
none-dimensional 1nit1al states under the tull Hamiltoman (1),

Under appropriate conditions, the classical system described by the
Hamiltoman (2) undergoes a transition to chaotic dynamics. By this we
mean that a deep change occurs in the nature of orbits, which, above a
certain perturbation strength, become extremely sensitive and
complicated and wander erratically in phase space. This irregular
motion, 17 described 1n the unperturbed actions space, has a diTfusive
character and leads to tast 1onization. Quantitative conditions for the
onset of chaatic dynamics can be obtained by mean= ol the resonance
overlapping criterion /17,20/. The starting point of this analysis is
realizing that the external field will more effectively perturb the
undisturbed maotion at first order resonances, i.e., at values n of the
unperturbed actians such that the external frequency w resonates with
some harmonic of the unperturbed electron mation. These values of n
are such that sst (n) = w with s an nteger and w(n) the angular
frequency (Kepler frequency) ot the unperturbed motion:

< (n) = dHg/dn = 1/n3

First arder resonances are then given by n, = (sw™ 1'% However,
despite the the fact that for these values n, the perturbation 1s very

erfective, as soon as 1t manages to drive the motion away from one
unperturbed resonant orbit its etfect pecomes weaker, and nonlinear
stabilization may occur. In that case, the motion keeps 1n a
neighborhood (a "resonance region”) of the original unperturbed orbit,

Hawever, 1f the perturbation 1e suffitiently strong, the mation can
be driven s far away from the orginal resonant value af the s tian,
that it can fall under the influence of another nearby resonance. There.
the same process may repeat, so that the ortnt may wander 1n achion
SpAce 1IN 3 NTUsIve vealy,

A quantitative estumate of the perturbiatian <trength which s
necessarny n order that this may happen 13 qotten bty ewsluating the




virdth ot the waraus rezsanance requons and then ty requirnng that
nearby regions overtap S174,

The analysis Just authined can pe apphed to model (2); 10 15 then
found that for wgy = wng” = 1 0 where ng 15 the 1mtial value of the
ctiond and for field strength exceeding a critical value ¢

€9 = €ngt > €, & 14150 wy 73 (3)

all resonance reqions corresponding to n, > ng do overlap. Then an ortnt

leaving w1ith action ng 1n a reqgion af phase space where both wy > |
and (3) are satizfied will diffuse indefiritely and eventualiy romze.

Notice that in (2) we have introduced rescaled values ¢, éng® for
neld and = wny® tor trequency. The ysetuliness of this scaling is due
to the fact that classical dynamics depends on ny only v13 these
variables since, as ©an be readily checked, changing the imtial ng by
some factor will change the solution nit) at any later time by the
same factor, provided ¢, and g are kept canctant, and time s
measured in pertods of the field (see also /197),

we ernphasize that estimate (2) 15 vahd anly Tor we> 1. Indeed far
mg<l, e n that phase cpace region where2 w15 <maller than the
Fepler frequency. there are no first-order resonant values of n, and
the motion 12 therefore more stable. A transition to chaotic behaviour
can still accur/ 12,20/ due ta the finite width of the resanance reqion
associated with oy = | but, in order to compute the ¢ in this reqion,
alsg mgher-order resgnances st = pw , p >1 must be taken inty
sccount, It thero found that the comtical Tweld ancreases  with
deireaiing s howewer, for very taw wy static Deid womzaton acours

P LTI B

a1 courze, higher order resonances play a role in the chaotic
transation glia tor cogs boand, indeed, an approxamate account of thern
Ao el Tk en an L3 YLy the Choice ot the nuneericd!l tactar 1750,
U A proper cecond order analysies 290 leads to but 3 small

P re e s raitoeen s al tactor,




In the chaotic requme. eg#¢ . wy>! the process of diffusive

excitation 15 convemently described in statistical terms. Indeed, an
equation of the Fokker-Flanck type can be derived /17/ :

If/Qv = 1/2 3/3n (D 3(/3n} (4]

where 1 (n, t) 15 the gistribution function and t 1$ the dimensionless
time, measured as the number of periods t=wt/2n of the external
field. The diffusion coefficient D in quasi-hnear approximation 1%
qrven by

3ngl = 2 €2 n¥/w?3

D= d=i8ni=/dr = 2¢7 a3/iwy’
((4) and (S) were also gerved 1n £20/).(*)

Since O increases with n according to a power law, 11 15 possible to
find an exact solution of (4). In order to do this, we must take notice
that the stochastic diffusion ruled by (4) can take place only 1n that
part of phase space where the chaotic transition has occurred, Gomng
down to lower and lawer action values. one will eventually meet an
invariant curve which has not been destroyed; we must therevare Inok
1or 3 solution of (4) satistying the boungary conditian Gr/anln:n-: 0 ot
2ero flux across the boundary n=n of the reqion of statlity. In order to
do that. the change of variables gy = n/ng. T = Teglug /3 s
convement. Then, as shown tn app. Il, Tor T y<<| and letting § =i /ng,
the solution assumes a sutficiently simple form:

0% {expl-i 1/ y-2/ /1§ + 1 /T )

ceapl-C1F Fg= 130 TR 2y ¥ S in Tl (53]

P The nuroerical coefficient 2 oan (&0 corresponds to the Trequency
range 1w g o doFor wsr T the asymptotic value of this coefficient
must beogsed, whach vnonear te 7,
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Axowill be zeen in sectian 3, this tormuia compare:s with the
resyltz of numerical integration of the eguation: of moation with
remarkable success.

The possibility of using this statistical description will play an
impartant role o our subsequent analysis of the romzation process,
Indeed, due to the rapid growth with ri of the diffusion coefficient,
stochastic orbits diffuse so fast towards mgh values of n that n
practice we can assume that they actually i1ormze- 1.e. n becotmes
infinite- in a finite time. A rough estimate of the jomzation time
3dequate Tor our present purposes can be gotten from eq. (Sk

v -

T gD w2 gl (6

In later sections we’ll use expressicn {6) in order to roughly estimate
the diffusive 1onization rate P, *-t‘," .

In the remainder of this section we discuss the vahidrty af the
ane-dimensional approximation {2i. Let's consider first the case when
Ny == Ny, My=>m and therefore py<<I. Then, since 2~ p,l%d for
2 W2 2
large Ikzl, the matn contribution ta the varation of ny will be qiven
by terms in {1e.d) with k, =+1, {Notice that Zpp, TR semiclassical
matriz elements for transitions with &n, = sk, The fast decrezse of
these matrix elements with small U, when k, 15 large was already
remarked in /31/).

For «g»: . . the phase Xy beging 10 vary chaotically, and this leads
fo 3 diffusive change in ons o alsa. The diffusion cate far n:
quasi-Tinear approximation can be derived, as shown an ST by
retatrng i C1C) anly terms with k.=¢ 1. 0ne 1inds that:

D; % n; Din, + |m|i/nt (™

Thie estimate chowes that over the 1amzation time (8 the change 1n
et AN e (. e |m|?' oo appears ta he sraall, T tact

indicates that the onset of stochastioity doesn't Tead to sigmticant
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viclationz of the one-dimensional approximation,

Along similar hines, we can show that a suitable one-dimensional
approximation 15 valid also 1n cases when ny ~ |m|>~>n3. [ndeed from

(le) it follows that, in such cases also, U,<<1. Then, upon neglecting
uy i (lc,d) we obtain the one-dimensional dynamics or the variable
ny=n- |m|, described by the Hamiitonian

H= ~1/2n% +€ n cos wt [3(n—|m|)/2

-2un T, k) K cos k A ] (8)

with gy %= (1-|m|/m'% we can now apply to this one-dimensional
dynamics the resonance analysis, just as was done for (2). From the
asymptotic properties of J/(kpy) for k -> e /32/ 1t follows that

high-k harmonics 1n (&) become exponentially small as soon as k 15 SO
high that (3/k)%® < m/n . This means that the resonances of the field
with such high harmonics { which take place when wyzk with (3/k)?
< m/n ), cannot significantly contribute in the chaotization process.
Therefore, when wy >>1 the transition to chaotic motion s possible
only for m 7 m,, with

m, = ny (3/wg)?? for wy>>1. (9)

For wg ~ 1 we may take m . % no. At this point we might start

afresh the analysis for the Hamiltonian (§) in order to determine the
critical field and the diffysion rate under condition (9). However 2
comparison of (8) with (2) suggests that the results of this analysis
shoutdn’t deviate mare than a factor 2 from formulas (4) and (S

Again, the one-dimensional appraximation (81 1s nat cigmiicantly
vinlated over the wonization time; this can be seen at once, because the
diffusion rate far n, is still given by (7?3 so that an estimate for the
variation An, similar to the previously established one Tor (2) halds
tar the prasent ©3ze.

Further detatls on the classical dynamics of excitation for the




model (23 w1l be given in Gec. 3.2, where we shall also discuss the
results of numerical strmutation of this maodel,

3.2. Theory of Quantum Localization

The main result of the classical analysis carried out in the previous
zection was that far sufficiently strong field the classical model (2)
exhibits o transition to chaotic motion. After this, the classical
distribution Tin, =) spreads difiusively tn action space, and ionization
takes place 1n a fimte time,

we el now tackle the basic question, of what modifications would
be 1mposed on this mcture by quantum mechamcs. In particular, we
will study the behaviour of the quantum probability distribution over
the unperturbed Tevels, which 1s the quantum analag of fin, Th

Frewvipus stuthes on perogically perturted quantum systems that
become chaotic 1n the rlaseicai Liunt - n particular, on the Kicked
rotator model - brought into the light the localization phenomenon as a
typrcal poccurrence. The quasi-energy spectrum iz typically a pure paint
one, and quantum effects lead to a limitation of the classical diffusion
and to exponential localization of the probabihity distribution around
the 1mtially excited level ny ; which means that in the average, and
apart from fluctuations (that may even be rather big ones) the
distribution l1ooks like:

T eexp (- 2[n=ng /1) (1)

Here T, 13 the time-averaged population on the unperturted level

carresponding to 3 value n oof the quanticed action, and 1 ts the
localization length,

I the hight of thewe previous Tindings, 1t 12 natural to 3ssume that
3ocamlar poture apphies alzo i the present case, Specinoally, we
will aizume that even n the sermclazsical reQion, and when the
clazsical motion s chaotic, 3 mechamam of quantum hroitation of the




chaatie diffusion 12 working, and ticst, under sutatile conditions, thos
mechantsm will produce a situation analogous to the rotator case.
iJnder such conditions, the part of the q.e. spectrum relevant to our
analysis will be quasi-discrete; the small line breadth of its levels
will be negligeable on a time scale short in comparison with the very
long one associated with multi-photonic 1onization. While it remaing
true that the quantum atom described by (2) will eventually 1onize, no
matter how small ¢, nevertheless on the time scale invoived by actual
experiments the lacalization phenomenon discussed here will give it a
remarkable stability in contrast with the properties of chaotic motion.
The obvious premise that localization tn hydrogen atom 1s related to 3
nimte time scaie, should not be forgotten throughout this paper.This
assurnption will be fully supported by the results of our nuraerical
experiments.

Under such assumptions, we shall presently determine the
lacalization length by the simple rethod described in /37, In this way,
we will be able also to determine the quantitative conditions under
which the localization picture actually applies. To this end, let us
start with the case of homogeneous classical diffusion, that 1s, we
overlogk the variation of D with n.

In the semiclassical regime, the evolution of a quantum state
initially coinciding with one unperturbed eigenstate ng will nitially
follow to some extent the classical development of f{n,t). Therefare,
over the time scale in which this semiclassical approximation halds,
the spread of the wave packet gver the unperturbed eigenstates wili
grow 1n time according to An(t)x(Dr)'/%

However, the discrete character aof the quaszi-energy spectrum
will prevent this diffusive growth from going on indefinmtely, 3s 1t
wauld 1n the classical case. The time vy atter which the discreteness
of the quasi-energy spectrum will become manmifest can be estimated
by Ty v N, where Nots the number of g.e. eigenstates sigmficantly
excited by the onQinal unperturbed eigenstate; indeed  21/N 1s Just
the average spacing of g.e. ewgenvalues sigmficantly contnbuting to
the packet evalution, Then, the number of unperturbed levels excited by



Phe s ave DAtk et alter the tirme S Ai‘l'l?[if' = ([IT{’]‘ <0 Thrs eean:
that one unperturbed level contains N~ An (20 Qe levels and that,
WAORSERSEA S ONE Q2 elgenstate Tcantiinst oo An (T} unperturbed

leyela, The tatter number, however, i the maximum s=pread attainable
by the wave-packet, t.e, 1t coincides with the locahization lenqth 1.
Theretore we Qet an equation for T«

rp EAniTyl Dt sec )

where ywe have introdyced an undetermined numenical fartor o, to be
found by numencal experiments /107, For the ratator model, 1t was
round o« %= |, The same choce Tor i in the hydrogen atom Case would
yreld

I 2D ingk~ 7, SR

where Dingd 13 given by (8% Ding)z Zeging?iuwg ™2,

Howevar this result was abtained under the assurnption that
De=const,which e justitied only in that reqion where l<<ng. Instead,
far 1~ g, the dependence of D on notnay substantially modiry the
lacalization picture, and, 1f the field strength exceeds some critical
value, 1t may even turn aut that localization is nat possible at all. (A
simtlar “delocalization” phenomenon was investigated and explained an
3 simple example in Refs. /3,10/).

In nrder to clanfy how delocahization accurs, we need to modifiy the
atove method for determining 1, 1n such a way that the dependence of
O ononos esphoitly taken ainto account. Therefore, in place of  anttd =

oL ing) #iV7 we st substitute the dependence of An an T that 13

entarced by the Fobber-Flanck equation (42 In thie way we find, 35 3
result of the caloulations developed i Appendix I, that Anit) i
green b

IS B TR P P O R | LR POV (12




By the same argument s abowve, wé can now Dind ©oand 1o the
tocalization condibion i'-,n'.'t[)_) T oTp . However it ey 12 1arge enaugh, the
curve An{t) will never intersect the straight hine «t tefore exploding
at v = wy''3/362 . When this happens, no localization 1S possible and
this implies unbounded diffusion for the electron. Mare specifically, in
App. III we chow that the colution of An(tD‘J cxtp gives the

ncahization tength 1 1n the Torm:

73

P wy ey u /3 a3

where u is the least of the twao solutions of the equation (*)

So2log 6 ng M2 egr? = giul = u(1-u)2/(2-ui i14)
such that O<u<i., Humencal data indicate that nere ton, fike 1n the
rotator case, «= 1 is to be chosen { see e. q. f1g. 10 and related
carnments in sec. 3). Therefore, since the function q(ul in the interval

{0,1), has a maximurn = 1/12 at u = (Z-/5)/2, it fallows that for

TEEALE Wy %7 (Brg) (15)

2q. {14) has no solution.

Thus eq“’ defines the threshold for quantum delacalization, Of

course, in order that delocalization may occur, 1t 15 310 neceszsary
that ¢, exceeds the threshold for classical chaos  (2), Just because
the semiclassical estimate (12) holds under the assumption that
chaotic diffusion takes place in the clazsical systern, Acoordmng to the
argqument just outhined, across the threszhold e‘q“" 3 qualitative change

v The shight difference i numerical coefficrents between o171 ang
the analonous Tormuby ot ret. <200 1S due 1o the 130t that an s oty 3

ThEradgeed iz 0,

YAl Ot oocameshat teaser than 1wt




aoours, and the localization mcture 15 nolanger justhified, we hould
then expect that above this thresheld here is no quantum limitation to
the classical diftusion and, ndeed, this will clearly appear from
numerical resuits,

The above one-dimensional analysis can now be modified, so as to
apply also in the 2-dim case for quasi-1-dim. states. Indeed, even
though we knove from Sec. 2.1 that the 1-dim. approximation ig not
violated far such states, still we cannot & p/70/7 exclude that the
presence af an additional dJdegree of freedom can destroy the
locahization of these quasi, but not stnictly, (-dim. states. However,
We Can answer this question by the same method used n the i-dim,
case. Indeed since classical diffusion will now take place both for n,
and ny, the number of unperturted levels excited at time © will b

N %A (1) A nylt)

For Angded we will now take eq. ((2); moreover, since An,(t) can be
assumed to e small (see sec. 2.1), we will take Any(t) ~ (D,%)''%
with U, a3 in formula (7). Imposing now the delacalization conditian
Noxow JBE00/18/21/ ane eastly get the estimate for the
two-dimensional delocalization threshold:

By 2 ¢ p 2R ¢
gp > £ = B wy"®/ng [ny (np + [m)T72 Y (16 )
where 3gain an undetermined numerical factor £~1 was introduced.®

The estimate (16 ) clearly indicates that 2-dimensionality sharply
decreazes the delacalization threshold. Nonetheless, for sfates with m
“hp ~ | the 2-dim. threshold is almost the same 35 the |-dim. one.

(*)Actualiy 3 more refined analysie shows that in the 2-gim. case here
congydered one has localhization onoan exponentially liarge scale (Gee
ref. 4% and eq. id.4i of ref. 4l o that delocatization takes place anly
shghtiy above £1a),




We are therefore justified in assuming that for such gquasi-|l-dim,
states, the lacahization-delocalizatign picture remains vad.

The decrease of the delocalization threshold in the 2-dim. maodel
yields one reason (another one will be given in Sec.3.3 ) why some
agreement was found between experiments on excitation of H atoms
from states with n~ 66 with field frequency w/2n~ 10 GHz /12/ and

the results of numerical simulation of this process on the c/assrcal
model  /15/26/. Indeed, in numerical experiments the nitial
distribution of states +ith n=66 was nearly microcanonical, so that
the above discussed 2-dim effects played an essential role in lowering
the delocalization threshold.

(n closing this section, a couple of remarks concermng the vahdity
of the quantum system described by the Hamiltonian (2) as a
physically realistic model are in order. In the first place, 1n the
quantum theory discussed above we considered the electric field as
classical. This approximation holds if the full number N of field quanta
inside the rmicrowave cavity of volume ¥ :

N = ve? /(4Thew) ~.’».1023602/(nns‘mo)

1s sufticiently large. For 1stance, for ¢y =05, wy =1, ng =100,
vz1cm3, which are typical for the range explored in our 1nvestigations,
we get N ~ 1011,

Also the question may be raised whether the diitusive excitation
process, that i1s made possible by the delocahization phenamenan,
should not be sigmficantly reduced by the spontaneous  radiation

process, However, the rate T, of the latter process 1o ruch less than
the dittusion rate [, [ndeed even tor artital quanturn numoer [~ 1 the
rate [, AT BT Ty Estirnating T by the wneerse o

the Cclassical womzation bime e, by r]"tm";'n, with 7, a:in (Bl we

abtain:
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where the numerical estimate 1s qiven 1or the typical values wg=1,
€9=.05; notice also that the ratic does not depend on ng. Actually, this
ratio is even smaller because the extended state contains 1 up to ~/ny

>> ],

2.Z. lonization in the Presence of Locahization

According to the theary developed in the previous section, a3 long
as the one-dimensional approximation is valid, the dependence of
wonization on the Neld strength should have 3 maore or less marked
threshald character, defined by the quantum delocahzation border (135,
However, a microcanonical distribution of 1mtial states looks fairly
typical in many physical situations, <o that it 1z nteresting to
investigate what should be 1n that case the dependence of iomzation
probatility on the field ntensity. Indeed, <ince the twao-dim.
lacalization border (16) depends on both quanturn numbers ny, ny, In
that case we should expect that for any { not too “high™r field, a
fraction of the states, depending on the Tield strength, will be
delocahized, whtle athers vall be locahized and will therefore qive no
contribution to the ionization rate.

we will derive this dependerice, under the assumption that the

interaction time v . of the atom with the field is large enough for

the classical system to undergo complete ionization 1.e., that the

classical ionization probabitity F‘f':l. Besides that, however, Tint

must not be =0 Jarge that direct quantum omization from  the
stanonary distritution (10) nto the cantinyous spectrum becomes
effectivelsee the comments in sec. 2.2).

Let's first assume that we have imtially 3 hamogeneaus distribution
ol statec with a fixed value af ng and of the magnetc quantum number
rn. Then, after the tirne © o all atoms nitially in states with
g eq\'“"(n_—.,m) will be vomzed. These are precisely tae atoms 1mtially

moatates with n, > n.™

with n," qiven by the equation e,]:eq‘?"




tra®hm). Then, recatling that ny+n; = ry- | I | we see that the fraction
of atoms in the ensemble which will not be ionized at time Tipt (9
equal to 2n,* /(ng -|m]|) (the factor 2 is due to symmetry for
exchanges ny  np). Computing n,* from eq. (16), we get:

N = [(m? +ng?AD)12 - Im|] /2 (17)
The 1omzation probability 1s therefore given puy:

Pt = 20,/ (ng-|m]) =
= 1 -4 [mE+ng?A21M2- | m |}/ (ng- [ m )

where
A= 282w P02 . {18)

Now let’s assume that the initial distribution is microcanonical,
i.e., that all quantum states with & fixed n, are equally represented in
it. The full number of such states is ng? . For any given value of m,
the number of non-ionized states at time ;.. for the given ¢; 1 just

7 (m,eg). We must then sum over the different values of m; in doing
this, however, we must remember that there is a classical value m’
above which there is no ionization (9). Replacing the sum by an
nteqral, we rind that the fraction of non-iomzed atoms at time Tint

for the given ¢y is given by
P-P = (4/n02)f n,% (m, ¢4) dm

The factor 4 in the above formula is due to symmetry with respect
to exchanges m -m, ny n, . The latter symmetry must be taken
into account also in inserting the appropriate expression for n,"" in the
integrand. Inderd, n,®" cannat excecd (ng-|{m|)/2; otherwize, since the
argument iz symmetric in ny n., 3 supercritical value of n. would
enforce a subcritical value of r|‘:n0-|m|-n2. Therefore, n°" in the
atiove nteqral 1s actually the mnmum between (17} and (ng- | m|)/2,
i.e., it 15 given by (17) for |m|<m =ngy/i1-4%), while, for m>m, it is
equal to (n-|m|[)/2.




Then, assumimg m_ % ng fwhichy as we have already remarked, 1=

leqitimate for wy = 1), and evaluating the integral, we finally get the
dependence of Fy on the field ¢, in the following form:

P, = /(1-A2) - AZIn{[1+y(1-AD)/A2 } (19)
where A s qiven by eq. (13).

Unfortunately, it would not be correct to use available experimental
dats a< a3 check of (19), for the following reacons.

In the first place, whereas experimental data concern the frequency
region twy<1, the above described theory of localizatian was derived
in the frequency region wg>1, where Ist order resonances exist (the
peculiarities of the excitation process Tor wg <! will be discussed n
ser. 3.2).

Second, according to numerical data /157, in experiments the
conditian F‘,“:I was not fulfilled after time v, ., ; indeed, by

Increasing v, a further increase of F‘]C‘ was gotten. This fact

makes mpassible the comparison of availlable experimental data with
(19,

2.4. Comparison of Diffusive and One-Photon Ionization

In the delocalization region £07€q the quantum mechanism of
suppression of classical diffusion is not at work and therefore ane
expects that the quanturn electron will diffuse and ionize like the
classical one. This fact has been numerically checked and will be
discussed n section 3. The resulting diffusive excitation can hardly te
described within the framework of conventional multiphoton theary;
moreover, it usually takes place in a very different range of
requencies  than considered  there, [n order to  appreciate  the
eftectiveness ol thie new Joamzation process, “t s anteresting to
cormpare 1t with the farmhar one-photon process.




To obtain a quantitative estimate for ane-photon terazation, we
shall first observe that any normalized energy eigenfunction far the
unperturbed one-dimensional hydrogen atorn (1.e. Tor the Harmltonmian
(2) with ¢=0) can be wnitten as u(z) = z R(z), where R(z) 12 a radial
eigenfunction for the 3-dim. atom with orbital quanturn number 1=0.
Therefore, the matrix element for the photoelectric transition from
the n-th unperturbed level of the 1-dim. model (2) to the continuum
state having energy P2/2 = -1/2n? + i 15 given by

,0 - J3p (Y| (- e
RO, = [dz 23R, (@) Ry (2) (20)

where K, R are radial eigenfunctions for the Z-dimensional atom

ro' 'po
with orbital quantum number -0 ( We assume R, t0 be normalized on

the energy scale).

For highly excited states n>>1{ the integral (20} can be evaluated by
semiclassical methods. In Ref. /33/ the following semiclassical value
01 dipole matrix elements for transitions from states (n,)) to (p, 1¢1)
was found for l<<n, p<<! (notice the difference 1n normalization
between (20) and ref./33/):

ROIEL L s = 12 (K, gl 373) £ K g (w0 13/3)] A3 2mn™2)

where K, (&) are Mac Donald functions. Considering that the 2nd term
1n square brackers 1s negligible for small |, and that for £ -> 0,
Ky 5(8) = 0.459(311)74(32/2)7 25, we find the following semiclassical

value tor (20%

IR 5

.l 1 R I Lo I
P S RP G & 0.459 2

Then the transition prababrhity for urat time s

Py = n/2) [RPC 125 00265 5/ ng* (210
i A

g the 1onzation probadiiity inoone periad of the external nield s
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ar g = ngd 20 Te value 1 270 fimee Yarger than i ret. /737 due tao

averaging over soltd angle,

[n order to compare the 1-photon onization and tne ditfusive
nnzation we shall choose the optimal regqime ot e3ch process. Then
for [-photon 1omzation we take w(2ng<)™', <o thatY = 34 ¢ ng 3.
(nstead, for MITusive 10M12aN100 we take i % ng > (wg & 1), and we
estimate the 1omization probatility per period as 1, = t]"WIth T as

DIRTIN A

Ire this way we see that AIffusive romzation, which takes place far a
much lower freguency than 1-photon onization, 20 3 much more
eitective process than the latter:

Tpd T ¢ rlo?"‘z/ 17 1T

In real physical time thie ratio changes as each (1 muitiplied by
s awn aptimal trequency whch Qives:

rf.l /T't' ) '-'nfld“'?z"llEE (24
This ratio 15 <till large for ny=> 1.

A detatled analysis of the dependence of the 1omzation probability
on frequency will be discussed in cec, 7.4
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SO Lo ateen by Tonnehing arad beldysh parameter,

we shall now discuss some pecuharities of the excitation ang
lomzation for quast-classical states in the ciassically stable region
(g€, Wy > 1. In this case the classical motion from one resunance to

the next one 15 rortidden by the presence of smooth Invanant curves
petween them.

Due to this fact, excitation and 1omzation can take place only thanks
to tunnehing through the classically fortndden region. A distinction can
then be made between the tvwo opposite cases, when the number of levels
coupled by the feld 1n one penod, An = D172~ vy ngiwg™® 15 2mall

ar large. In the former case, perturbation theory holds, Therefore, the
probabihity of transition from the nitially excited level ng>= 1to nearby
levels 15 small, and the 1omzation probatlity depends algebraically on

Ege

W] e (Ng €(,/!L)u”6)rk (25)

where k -~ ng 15 the number of photons required for the transition into
the chaotic component. [n the oppnsite ca<e when An>»1 byt stil)
fastg, tunneling becarmes daminant, and we can reasonably expect W) to
depend on £, 3ccording to
Wy o 270 expl- ong (e, - 9)/éq] (26)

shere o vy numenic sl constant of the nrder of umty, r,"reprezente the
orsation rate rarm the chanty companent, gnid the 2xponentral tactor s
yesate] to dess e tunneling ante the classically tarbidden reqion , an
account ottt analogy with the formula descnbing tunnehing 1w a static

fehd, The  aotrtian for ,ppln bty of R

RN My == e . B ]:":,[1{"(‘“"':)) [

I under that G070 holdog devel oy -~ b'.'-uu')'"‘ e requited; e.g., Tu
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it 13 nteresting to compare these resulte wth  keldysh’s theory 1or
tnneling/ 347 1n o which an “adiabatic parameter ¥ = w/fleng) = wigley
15 antroduced, discrirmnating the perturbative regime  (1=>1) from the
tunneling regime (Y=<1), In the present case, (27) shows that in order
that tunneling terzation according to (26) can take place 1t 15 necessary
that ¥ = wyfey =>1 while for Y<<1 gne falls inte the region where
S fustve qamzation accurs, Far anstance, far wy o= b, €qx 0,01, 1y
>x 00 eg, (27) 19 satisfied but T x 100, Therefare, we see that here
alzo, Nke n 247, the multiphoton regime occurs far weak 11eld tn the
perturbative requan (¢, <<€D), wnereas tunnehing takes place in the

appostte caze of strong feld G, -"‘i’r,'".\. In concluston, due to the
phenormenon of hitfusive excitation, the keldizh parameter loses 1t
usual meamng snd & new parameter T, must be intraduced i order to

AECrminate petween the perturbative reqime (1 == 1)and  the tunneiing

reQirne 7<) Accarding ta the previous discussaan the new parameter
] H f p

T, wll have the expressian
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4. Numerical Results

4.1. Methods of Numerical Simulation

In this section we shall describe the numerical methods and the
checking procedures we used in our computer simulation of the
classical and gquanturn dynaraics of the 1-dim. madel.

Reducing to one the dimension or the problem sharply decreases the
computation time n the quantum case, and this allows for a more
precise investigation of the excitation dynamics.

The main computations were carried out on the CRAY-XMP Computer.

The numerical solution of the classical equations was carried out in
action-angle variables (n, A) .As in /18/, in order to circurvent the
singularity at z=0 a change was made to new variables (n, £ Jand to a
new time T, which allowed to write the equations in the vollowing
tarm:

dn/dv = - € né cos wt sin &
d42/dt = n" ¢ 2en cos wt (1- cos &) {29)
dat/dv =t -cos & A= & -sini

A strmlar method for avoiding the singularity at the origin was used
In /297, Eqs. (29) were then numerically integrated by the Runge-kutta
method, The imtial distribution ot classical trajectones was taken on
a hine 1n phase space with n=ng and uniformly distributed phases X;
thiz chowce corresponds to the imtial condition used 1n the quantum
case fonly one level exorted with n=ng b The Tull number of classical

CECCar 1o,

trajectaries wac talben

An abcorption mechanism was introduced for trajectories being
eROIted above n T AN, A chiande an the border at o apsorption anty
weakly aftected the evOitation prabatnhty.

The anpestigation of quanturo dynarmcs dJescnbed by the Hamiltonian
(Z) was carred out by teo distinct methods. [n the hirst one,
following 16/, a base of discrete unperturtied eigenstates was used,
and the equations were colved for the amplitudes ¢, of the expansion



ol the atate vector aver these migenstates:

16, = -l e v elt) 2oz e (Zq)
The walue of n,.. was approimately 20-40 levels lesser than the
ey 919 not

apprectably intiuence the dynamics, owing to the exponential decrease
At the distmpution 1 = lr:.nlz In the reqion n<ng where the ciassical

initially excited state ny, . A further decreaze of ot

motion is stable. A typical value for the full number of levels for
which egs. {30} were solved was ND=n, . - n. . =192,

In arder to numerically integrate (30} the time dependence of the
field was approximated by e(t) = At e cos wt ) 81 - KAL) with
At = 2m/wl, where L is the number of integration steps per period.
This scheme of integration is physically equivalent to intreducing
supptementary fields with frequencies <y, = kLoy, k=1,2, .. 3ince in
our computations @~ I/n03 and the number L of steps was chosen

petween 100 and S00, then even the frequency sy, ¥ 1000 w35 much
farger than all frequencies for transitions between ntermediate
levels, Therefore, the influence of the fictitious frequencies w, can be

considered to be small.
The integration of the numerical scheme thus cobtained can be
carned out exactly; indeed, it reduces to successive applications of 3

matriz to 3 vector cit):

c(t + At) = T expl - 1¢q (cos wt )AL 2] c(t)
=T QZ Q"' citi

where T and 2 are unitary diagonal matrices, with T = EepilAt/ind)

and ann = expl-igg itos wh At z,), z, are the eigenvaiues of the
matriy Zn et and Q 1¢ 3 umitary matrix that carmes the same matrix
1

it draqanal forrn, With this procedure, the normah>stion wW=5 fc | ¢

= 1 canserved too3 very migic acouracy Lo T In S1BS21 the
aperator eupl-iateglroswt ) was computed, by means of its expansion
m powers of At (up to the Sthoorder), wioch led to an effectiv
damping on  higher levele and to a poorer concervation of



narralization, The new method wsed here appedrs sigmicantly more
efficient, In that it permits to decrease the oumber of <teps per
period,

The main inconvermence with the just described integration scheme
ts that the continuous spectrum is completely neglected. Ever though 3
number of arguments can be put forth /18/21/, suggesting that the
continuous spectrum would not essentially modify the dynamics of
excitation over discrete levels, nevertheless it 1s mpartant to build a
numerica; model free of this shortcaming.

AS 1ar a% we know, no numencal experyrments wore up to niowy
performed, giving a precise account for continuous spectrum/Sl/. A
partial consideration of tranzitions into the continuum, has been given
in o ref. /267, However no account  was  there  taken  for
continoum-continyum transitions, which, generally speaking, do not
appear neqligible as compared with transitions to and fram the
continuum, Morecgver, the number of equations to be solved charply
ncreases with the level number n, and ths does not allow Tor
Investigation ol excited states with ng & 60,

A more effictent account for continuum can be given by means of
the so called Sturm base. This base 15 introduced by considering the
following eigenvalue equation:

,-.
wl
Z

- 1/2 d2u/dz? - (B/2) u=Eu  z>0, E<0Q, $>0

For R=1, (31) s just the Schrodinger egquation for the statianary
states of the unperturbed 1-dim. hydrogen atom . By changing varables
acoording to 8222, u(2)= (8/2)'72y (2), eq. (31) becames

Igv = 4738 (& gv/dfy « [{E/20 8 - 170443 v = - v (320

The Sturm base is generated, by considering (32) as defimng
sigenvalues -§ for the operator Sp, where E<0 s an asrtatrary fized
parameter,

Instead, considering in (32) P 3% parameter and B a5 the

eigenvalues, one would resort to the usual base, including continuum
eigenfunctions.




I bowen 257 that 513 3 self-ad)mnt operator wath 3 purely
discrete  spectrum R=is+1)0-20)1Y<) with s=00 an ntener.

Ergentunctions tor Sp are qiven by

f2is [eeth (2001941 2R (=g, 2, 20-20)1 4y [20-28 1744

supl-18 7 20- 20179

and are arthonarmal:
pal

JEERREN NS

Here, snd below, Fowath three vamatdec wall indicate the cantluent
fiypergeametric function. In the following, we whall choose £2-172n,°,
i1y bewng the imhally excited level, Then, ol rnr,:.;':fl 1, apart from 3
normalization constant, the ng-th unperturbed evgenturn: tion,

we slso need matriz elernents far Ooand &< For £9 they are given an
JG0, where they are used in order to calculate the nd order Stark

effect, HMatrix elements far £ can be abtained ty direct cormputation,

Non Zero elements Tor 2 and 29 gre then qiven b

(33

g,: - 2”|‘|Zl~ Jut] )[:(:‘ | ”I/I‘l

S T Bt S SRS NS b

Let nowe $itiz, 2 $it) be the salution of the Achroedinger equation

sith the Harnbtoran €20 and 2=0 72 Then, 174 ‘ ! ('!'I’-'df: 1. Znce

B
the £z make up 3 complete arthonormal =et, 4 can be expanded 1n the

torm
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with Eg= - 1/2ng% and $(0)=(/ 2/n, )fnﬂ,,correepr_mmng to the imtially
excited level ng. By using the orthonorrmahity of the f and the
expression (33} for matrix elements, from the Schroedinger equation
we obtain equations for the amplitudes A (t):

Dise 1A - [sis+ DIV2A_ | - [ts+1)s+2)] V2 A =
=-if[2(s+ 1-ngi/ng?l A+ 3elting(s+ 102 A {34]
- elthngl(2s+ isls INTL A+ (2842) (s s+ 2NF A I+

{

+ g/ D)e(t)lso (52-1) A, + (5+2) ((s+202- 1012 Al

This infinite system of equations is exact and. even thaugh only 2
discrete base was used, 1t completely takes into account the
continuum. Indeed, each 3turm function 1s a superposition of several
eigenfunctions from the unperturbed base, including eigenfunctions
belonding to the continuous spectrum,

Onie eqs. (34) have been solved for &, the ariginal amphitudes ¢ (t)
of the expansion of §it) aver the unperturbed eigenstates

u ()= 2zn2 e WO E(-ns1, 2, 22/n)
ran be recovered by
Cith s o BOALD
Lnl.tJ e, Eru‘.-Asl't‘

where the  traratormation moatres B from the stumm to the

unperturbed base 1¢ qiven by

Byo = 170 [ sii sV on i g0/ i
i)

neo } -

=dine g Leios On = (g0 < dngras o 08t e

Fi-2, -(n-1), 2, - 4t‘|rjr‘|/"(rri't.])i')
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Here Fis Gauss” hypergesmetric function. A similar camputation, for
cofitinuous  spectrurn unperturted eigenfunctions can be made, by
simply substituting 1/p 1 place of n, p bewng the electran rarmenturm
{an analogous method was used, e.g., in /33/). A method for compuiing
F with large s, n is given in appendix IV.

The numerical integration of eqs. (35) was performed as follows.
One level sqe=tg-1 was initially excited, so that A(0)=(+/2/ny) 8y ne-1°
Then egs. (34) were solved for Sin L 5 L Sppe AS 3 rule, smmﬁzlo-SO,
anad the tull number N3 of Sturm levels ranged from 256 to 576, The
dependence of the field on time was taken in the same way as in the
previously described method, with approximately the same number of
steps per period: 100<L<300. Just as in the 15t methoed, the
introduction of delta functions into the numerical scheme made it
possible to exactly inteqrate the truncated set of equations (34) by
repeated applications of matrices. For the same reason, the loss of
normalization was very small ( ~ 10™), Unlike the 1st method, here the
presence of high frequencies w, = kLw led te direct transitions inte the
continuum; however, for the chosen values of L the probability of such
transitions was negligibly small, Far instance, for ng=60, wy=1, €,=0.1,
L=100 we get wng® = 50 and Y, x3.10°® to be compared with Y~ 2¢,?
= .02, Therefore the small &-function kicks introduced by the
numerical simulation of the monochromatic perturbation do not have
any effect on the physics of the problem; moreaver, their influence can
be kept under control by varying the integration step.

[n our opinion, monochromaticity of the perturbation i1s important
rar this problem, and substituting a 4-Ike perturbatinn Ekfs‘ (t-21ks i)
i place of ¢ coswt /37/267 can lead to a significant modification of
the physical picture of  muitiphotome excitation. The role  of
multiphoton transition wn the 2-dirn model with a &-hike perturbation
was studied n ref. /37/,

The valugs of Ajdt) obtained by ntegrating (34) were uzed to find
the armphitudes c (=) aver the unperturtied discrete base ty means of
the transformation matrix an. In this way r,n('-:'? were found for
approximately 200 levels. Since the total probability was conserved
with high accuracy, 1t was then possible to determine the probability




af excrtation above a Qiven Tevel, and al-g the prataba ity of trarcation
into  the vcontinuum, which 1s ancluded i the  former, (The
particularities of the distribution 1n the continuum will  te
invastigated 1n another paper).

Several characteristics of the excitation were camputed by the
described numerical method. Amang them, the most important were the
distribution over unperturbed levels f = |c |?, the Tst moment
My = {<n>-ng)/ngy , the 2nd moment M, = <(An)?> = <ln-<n>)¢>7 ngd, and
the probability of excitation to high levele. In order to describe the
latter we cansidered the probability W, 5 of excitation to states with

n> [1.5ng), where [ | means the integral part. For computations 1n
Sturm base, this probatihity included also the probahihity of 1omzation,
namely W, is the total protisbility in states nz 1.5 ng plus the
probability in the continuous part of the spectrum. In order tuo
eliminate fluctuations, we also determined the distrbution f averaged

over At pernods of the field; as a rule, AT was chosen 40 ar 60,
Finally, we determined the average distance of the electron from the
nucleus, <z>.

The accuracy of the numerical results was checked as follows.
First, in order to check that continuous spectrum was being properiy
taken into account, we performed a series of experiments with
ireguencies larger than the 1-photon tomzation threshald, wy > ng/2.
[n the absence at resonances within the discrete spectrum, the
probability on discrete levels with n > 1.5 ng was then negligibly
small, so that the probability of iomzation W, % W, . An example of
Jependence of W, on time 1s shown in F13. 1. In F1g. 2 we show 3
cornparisan of the theoretical itamzation rate with the nuraencatiy
nobtained one. As can be seen, there 1< an excellent agreement with
the theory of {-photon ontzation (Z20), which mdicates  that
computations tn Sturm base efticiently reproduce cantinuum Rffects,

A different type of check was qutten bu yncressing the number L of
integration  steps  per  penwod. The relative  changes  of  the
charactenistics of excitation produced in thae way were very small,
For 1nstance, in the st method (unperturbed base, B with ny = 66,
wp = 1.9, €g = (.04, 3 change of L from 200 to 300 for t = 12¢ led to
a relative change AW, /W, . % 1073 A<zs/<z> 3 S 1070 0r the




v abder o owete glad the Chianges o aturis base (B, even for rather
angll wadues of Wy oo Farmstance, 10 ng = 00, ag = 20 gy = (00T =
Tlu, Wy oo 4007 upon changing L from 100 to 200 the relative
change 1n probabihity and in <2 were A<z>/<z>= AW /W, & S.1073,
We can therefore assume that for sufficiently large L the effects of
nurnerical discretization in the integration af (20) and (34) bacome
rneghitthy <matl, and have naanfluence on the physics of the problem.

A further check conzizted in changing the tatal number of levels
both an the Sturm and n the unperturbed base, and also in matching
the extitation charactenistice abtained by the two different methods,

one such comparison is shown in Fig. 3a, where it can be seen that
there 12 3 good aQreement between results of computations 1n UE and
in 5B, and also that an increase 1n the number af Sturm levels does nof
change <ignificantly the excitation probatility  {which  includes
continuum),

Such an agreement not only takes place far integrated charactenstics,
but also for the distribution over unperturbed levels (Fig. 4) It is then
possible to conclude that continuum effects do not tead to substantial
moditications of the excitation dynarmcs, at teast Tor nat too strong
fields and mgh frequencies. Moreaver, the Aturm base used i our
cormputations appears large encugh to provide a satisfactory model for
quantum dynamics, including continuum,

Of course, 3 numerical scheme whatsoever necescarily involves a
dizcretization of  the continuum, and  shall  therefore fail  under
sufficiently fine tests. Gur awn method, a= dizcussed abave, correctly
dezcribes the continuuim spectram 3t least anoso 1ar 3% ane-phaton
effects are wnvalved, A more delicate task wonld be, tor anstance,
reproducing tunneling in a static field: this 12 anoamportant protders
for the computer simulation of actual expeniments on microwave
mzation 33 we shall discuss an sec. 4. Here, we may need maore
sophicticated techmaques, While thie e 3 real problem far future
tvestigqations, the really opoetant question oy v wlhether owr
scheme  was gqood  enough,  that  the  docahization-detocshization
e haniarr, wtnch s the central obgect of the present swark, can be
canstlered an ettective phenamenon  and oot qust an artetact of
nurmerical sirnulation, In this respect, the agreernent we found between
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clazsical and quanturn computations in the delocalized reqime, as we
shall discuss in the next section, provides, in our opinien. the mast
convincing element 1n support of our methods.

The dynamics of quantum excitation was investigated for ng = 30,
45, 66, 100, and the field ranged in the interval 0.01 < ¢, < 0.34, In
order to facilitate conversion to physical units, we note that for ng =
100 the frequency w/2n = 10GHz corresponds to wq = wny® = 1.51998,
and €y = €ng* = 0.1 corresponds to € = 5.144869 v/crn.

For clarity’s sake we have grouped our numerical results following
the arder of the previgus theoretical analysis. Therefore we shall now
discuss, in turn, the results on the classical model, the results
demonstrating the localization phenomenon, and the results
illustrating the dependence of the excitation probability on the field
frequency.
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4,2 Numencal results on the Classical Madel.

The dependence of the excitation probability of the classical system
an the frequency wy and intensity ey of the field iz shown in Fig. S. Here
the excitation probatlity w, ¢ 15 computed after t=40wy periads of the
external field. we recall that the wuntial value g 1s wrelevant due fo
the scaling property of the classical motion.The charactenstic
ascillations with mimma near integer values of wy are connected with
the presence of nonbinear resonances, the strongest of which correspond
to anteger g In fact, the dectruction of the centers of resonance
reqans accurs for targer field than their averiapping (%),

Then, for nat too strang Tields, a part of the trajectones from the
imtial disteibution, which s umform in space, upon entenng the chaotic
regian, diffuse to higher values of n, but the rest fall into the central
stable region of resonance, where they remain  qiving ho contribution to

RS

The charactenistic dip Tor w, = 0.5, which was also observed in
numerical experirments on 2-dim. atoms /40/ corresponds te 3 2nd order
(half-integer) resonance. The sharp maximum of W, for wy = 0.7
{weakly depending on ep) is due to the fact that for this frequency fnost
trajectories fall into the stochastic layer of the ceparatrix of the big
fundamental resonance wy = 1, Already after half a turn around the
resanance they pass inte the high-n region, where excitation 1s
with the 2nd order resonance at wg = OL5, explaing also the maximum 3t

iy = 043,

destrognd were numenically determined in £ 297,




teartant curve s destrayed  and there s a transation too glabal
storcasticity (see e.g., /S9/). From Fig. S we cee that the actual value of
£or 100 @™ 118 near ta 0.02, which satisTactorily agrees with the
theoretical value (3) obtained by the resonance averlap criterion /5/.
Fig. & gives an overall idea of the classical behaviour. Uther numericai
results such as the comparison with the soluticn of the diffusion
equation ar with the quantum distmibution on the unperturbed levels will
be given in the following sections.

4.3 The Distribution over the Unperturbed Levels

Here we shall describe the Teatures of the numerically computed
quantum distribution  over the unperturbed levels 1in the various
parameter regions which have been discussed in our previous theoretical
analysis. In this way we shall show that numerical results support the
theoretical estimates given above,

For high levels { e.q. ng = 100 ) and ¢4 » €. & 0.02 the perturbation
strength V = (3/2) n?e is significantly larger than the level separation:
V/AE % (3/2) €g n > 1, <0 that the field would be expected to connect a
number of unperturbed tevels. Yet, even for €n »> 1 no diffusive
excitation will be observed if e<e, . (The opposite case € n <<I

corresponds to the region belaw the "quantum stability border” /35/).
This is illustrated in Fig. 6, where an example of stationary distribution

in the reqion of stability e<e is shown. This distrbution remains

eseentially unchanged upon further increasing the computation time.
Classically, this fact 15 due to the statihty of the motion, and quantum
mechanically to the very small probabihity of tunneling nto reqions
classically forbidden by srooth anvarant curve (5o, 250 Hawever, for
a reliable detection of the tunneling descrioed in Sec, 2.9 particularly
accurate investigations are required, It 1s also decarable tooancreyse n, |
because even 1or ng= 100 the tunneling regio: appears rather narrw (see
eq.27).  Nevertheless, we think  that tunnehng ex(itation can  be
investigated both in numerical and in laboratory experniments, where at

the present tune it 1s possitile to prepare states weith ng % 20 /257, we
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lteenating felds are <till Lackiny,

For field strength exceeding the critical vatue (73, diftuzive excitation
takes place in the classical system. However, in the quanturn case, for
field strength lesser than the delocalization border (15) the phenomenan
of quanturn localization 15 observed, no consequence  af  which the
distribution over the unperturbed levels reaches  the stationary farm
{10} and then does not change upon ncreazing the time of nteraction
with the field. In this situation, the 1nization probabitity 12 very cmall,
and can pe neglected tor the Qiven anteraction time. A typical example o
quanturn lacalizatian s shown an F1g. 2, Here we <ee that classically
there ¢ & diffusive extitation, o that the classical distribution
abtaned by the numencal sumulation satisfactonly agrees wath the
thearetical formula (Sa) (the classiwal border of stabihity was here
chosen at m = S5 accarding o numenical recultel. The  quantum
distnbution waz otitained by the Sturm baze methad with NS = 576; here,
A% well a3 an Fig. 4, there 15 g ygood agreement with the results of
tormputations by the unperturtied base method, In contrast with the
classical resuit, o the quanturm c3se an expanential drap tallowed by 3
multiphoton plateau 15 observed, almost unchanged under a change of T
from 120 to 600, The guantum hratation of chaos 3lao led ta g
significantly tesser exovtation probabthity an the quanturm than an the
classical case (see also Fig. 20,

Anather convincing manifestatian of Tocalization was the saturation of
the Mirfusive growth of the moment ar the guanturm distribution (Fig. &),
The agreement tietwesan quanturn and classical dygnaracs here holds anly
aver s <rmall amtial bime anterval 7 %50 The smsliness ot v s due to

the wrralloness of the o1yt 3] Nt rate,

oo Frge 9ot v Sheeen hoes the mamaiiced yverage Datance
Rl=<z(ti= nyd of the electron from the nocleus depends an time, In the
Chaesreal st This g Pt prow s arnd Phee wlec tran dnote s T30 5wy
trotn the nuclene, fnsteyd, in the Quanture ©3Se, awitng too quantam

Foralization, the ehectran besroc ot lateg araaned 1t watisl pasition,

Phe regirne ot quanturn looalization s anvestiqated tar amtial levels
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g o S, 49, 66,100, Tor frequencies 1« wy -3 and Deld intensities 0,03
< ¢g < W12, and localization length I>>1 {which 1c the condition for
applicatility of the estirnate (11)). Numencal value: for the localization
length  were determined dwectly from the <stationary quantum
distribution. Comparison of these nurnerical data with the theoretical
values ( Eqs. 13,14) yields good agreement (Fig. 10). The observed
dispersion of points 15 apparently connected with the presence of 151ands
of ctability in the classical system. Also, the presence of a typically
quanturn resonance structure rmay play a role in this respect,

If the field exceeds the quantumn delocalization barder (13) then the
quas) rlassical diffusion aver the levels s sutticiently fast and no
localization takes place. In this reqime the evolution of the distribution
function can be approximately described by the diffusion equation {4). An
example of distribution n the delacalization regime 15 shawn in Fig.
113, where 1t can be seen that the quantum distribution agrees with the
solution (Sa) of the Fokker-Planck equation,

In order to check the vahdidy of the estimate (15) tor the
felocalization border, we investigated the dependence ot the excitation
probability on ¢, for different values of ng and of w,. This dependence
on the rescaled field ¢ = eo/eq‘” is shown n Fig. 13, For each value of
ng, Wy, the excitation probabiitty W, o was alwo rescaled to the
corresponding classical value taken for ¢ = ¢f'h 1n other words, in Fig.
13 we actually plotted W, ¢ (€g) = W, 9 (egl/W, ! (fﬂ)lc. ceqt™
In case that delocalization should actually take place for egve ', and

that in the delocalization regime the excitation probatmlhity should keep
clase to its classical value, then all the hines showang the dependence o
Wy Leg) for different valugs af nga wiuld be expec ted Lo toeet tor e =
1 at the value W, o = 1. As £an be seen fram Frg. 13, this as just what

actually happens.

An interesting feature of Fig. 17 1¢ that the dependence of the
1onization probability on the field strength at fixed ng, wy e ot always
monatonic, Far example, the data corresponding to ny =66, wy=2 clearly
indicate a “burp” occurring n the tomzation curve. The existence of
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stebge Tt e e:tpern‘uem;lm ot 3tned 1anization curves was
recently painted out in /477 3and 3 theoretical explanation was put forth
oS eEs

In the localization reqime, the dependence of the excitat on probabnity
an Deld intensity can be approximately described by W, o o et P
2 also clearly indicates that the experimental value of k Changes
wpbstannally with ng, wg, S0 that Jomng of all hines 3t 3 cingle pmnt
for € = 115 not 3 trvial occurrence, and can be considered as a
confirmation for our estimate (15), This diversity i the values of k<
cannected with the different number of photons which are required for
excitation i states with no > [1.5 n.]]. Hawewer, the expernimentally
Jetermined value ko1, typrcally, substantially tesser than the aumber k,
of photons theoretically required for direct trancition from ng to n = 1.5
ng. which 13 k[., =} o+ [Snu./lat_..m[,]. For instance, for n, = 66, wg = 1, one

TS

has bp = 7, kg
In our opimon this gifference 15 due to two effects. The hirst 1s that
multiphaton  transitions  de not  necessanly start from  the mtial
unperturtied state, but may <tart from anywhere 1nside the stationary
dvatribution (10) winch sets up after a while. In athee words, when
I > 1 excitation may start from levelis n~ ng+ 1, and this reduces the
multiphntomc degree k. The other reason is the appearance, far high
tevels neng, of a rultiphaton plateau of equidistant resonances /217,
Examples of distributions T, which clearly exhitit thmie multiphoton
platesu are given in Fi1g. 143t (see, also Fig. 41 The differences in
unperturbied energies £ = - 1/2n¢ betyreen consecutive peaks of the
distribution are equal to the field frequency; therefore, the sequence of
pests can be raturslly explyined 32 the result of 3 chan of one-photon
traniations,

I the cazes dlustrated by Firgs, (43, b thezo transitions start directly
from the amitial state ng, and the peaks can be enumersted simply by the
nurnber o photans, Hoeeewer the sityation s not alwags that suople; n
3oRRrIes at DAnes, the chatn ol pesb s Joes not Start 1ram ng, but rither
frorn zomewhere nside the focahized diztrbution fsee Fig. 2o Rel,
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S215), and at s even possibile to observe twa o three distinet charns
within the same distribution.

On the high levels the ampiituges of the peaks become roughly the
same and they build up an equidistant plateau. Increasing n still further,
the peak amplitudes do not decrease; thic seems to be due to the fact
that on high levels the field 1s strong enough for the probability of
transitions between nearby peaks to be stgnificant (saturated
transitions). This is the second reason why K¢ < K.

Upon increasing the field, the multiphoton plateau fses as a whole
(Fig. 14). The resonant peaks become broader, but in 3 number af cases
they do not disappear, even in very strong fields and n the
delocalization region. However, this can usually take place only for large
wy (compare delocalization in F1g. {1a and 14b, Tor ny = 100,
twg = 1.5 and 3, respectivelyh

In our opinion, the appearance of the multiphoton plateau below the
ionization threshold is in its substance akin to the appearance of peaks
in the energy distribution of photoelectrons which 1s observed above the
ionizatian threshold /41/42/. Indeed, for large n the distance between
nearby levels is very small: AE<<w, and the spectrum in this region
behaves like a quasi-continuum, It is then reasonable to expect that the
peak structure observed in the discrete part of the spectrum will persist
also in the continuum.

It is possible that a theoretical explanation of the multiphatonic
plateau in the under threshold distribution may be given, along similar
lines as in 743/,



Lo Qewengenee o0 e Eooiate Probalniiog en Freguency

Anoevanpde of dependence of W, o on g Tor Tized ey = 0004 and

aeffecent ng 13 shbown in Fige 1S, IE 3 here apparent that for high

TreQuencies ay, s b the eucitation probabinty s sigmncantly fess
than  The  carresponding Cl3dical one, The reasan s that o the
delocahzation threshold 7150 increases with the Trequency g, 50 that

3oraanity of pants an Frge 1S belongs te the requon of focahization,
Wi recall, however, that the estimate 1S s only wahd tar g, = ),
Indeed, tor iy ¢ V3 dynamical amphnication or the classacal
excptation takes place, 33 desonbed tnosection 2.0 Gaee F1Q0 9 Fram
Frge, S0 19 a0 appears that for -, = Ouid the mammum clyzsical
S TEATIAN S QOTERN TOr oy o0, How, 35 1S LEen trom F1g, 1%, the
quanturn probatmbity of exOtation for ng = 200 45, 66, 1o s clase to
the lasaac sl value, and even the corresponding fratobetiens an levels
thrge bl dook rather close to classioal results, weanterpret this rast
There 13 3 delocshization, Thus numertca) esperiment o Show That tar
sulftcrently weab frehd «p = 0004 gefocalization o *3pe place 3t 3
Prequenc] sy 7 UL BeeEr Than the b epler teegqueniy,

The fine strocture af the dependence of exottstian an (regquency 17
shawn 1n Fig. 170 In the lacahization reqion wop ¥ 1 oane obcerves an
essentially rezanant dependence an frequency, For low tTrequenciés
g = w7 most resonances disappear and the Jdependence an g becomes
STRRE. AR 3NA0QOUE Smaatmng ocours an the requan e T 1 ypan

increasing ny frorm 70 tg 100,

Far stll Tawer frequency, o, - nf, one Tatla it the reglas o
clacsrcal ctabtilitys theretore, ewcitating ceacao 1o the chyiinoal
agztem, Then, the quantara eoortation aharply Jieam e, b Thie
the dependence of the excitstion probability on tregaency has 3

thnshobd Character o that vmzanon fabes Diace v

e




Thiw eslimate  for the chaotic threshotd w2 justified by the fact

that for «wy < | there are no Ist arder rescnances between the
frequency ot the external Held and the harmonmcs of the frequencies of
the motion of the olassical electron /177 therefere, chaotic
excitation for frequency wg < 1 can take place only for =0 strong
nields that migher-order resonances overtap. un the other hand, vor
very [aw trequencly wy << 1 the value at the crifical Neld ¢ cotnciges

with that for the classical static field ionization. Notice that the
threshotd {361 holds only if €; = 1/50. Otherwise, the chaotic
threshold has to be deterrmned Trom eq. (3), and 15 equal to wctzlx'

{S0eg)3,

According to the theoretical estimate (243, the diffusive ionization
15 more effective than direct one-photon tomzation. In order to check
fhis preqiction we pertarmed 3 series ot numerical experiments, 1in
which the 1onization probability from states with rp = 30 ar ng = 66
was investigated aver 3 broad range of frequencies. The field intensity
was s chosen, that direct two-photon lomization was considerably
lesser than 1-photon 1omzation except for intermediate reconances;
morecver, €n < €, where £ i the critical intensity for static field
mmzaton, In thos situatian, the phatoeffect 1s expected to display 3
threshold dependence an freguency, with negligibly small romzation
prababrlity for wq < wy = ng/L,

Such 3 picture of the photoeffect proved to be incorrect. In Figs. 18,
19 we show the dependence on frequency of the excitation probabiity
Wp above a level n after a dimensioniess time v = 40wq which
corresponds to the same physical time for all wy's. Computations were
made n Sturm base, 0 that We encloses the probatality of transition
inta the continuous spectrum, For ng = 20, 000 A0p theretore n this
case W 3w For ng = bo, we took = 99, and then Wi enclosed a
stqnificant part of the probability on dizcrete unperturbed levels, In
Figz. 15, 19 the most eftective guoitation 13 abserved at 1requeniies
well Delow the 1 - pratan threshold, The nes thresnold walue a4 1s

claze to the corresponding clazsical value and, 32 explaned atove, 12
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deterttreed oy thee Corodiiron ol cveer Papnang ol g arder reLanyng e,
For zuffictently strong Gield, o appears squinicantiy Tesoer than

Tar £y =l ng = R0, the experumental vatue for i 1e oSy andg Tor

g T ULOE N T o0 the threshold 1s o = w35,
I the quantym Case, hivwever, there 12 st 3 amall probatihty of
exCitation even from the reqon w, = w, due to tunneling into the

claszically forbidden region, In the interval w = g = = l;g.”utﬂigﬁf?

delocahization tekes place, so that we s close toats classical value.
For Wy S g quanturm efttects fead to the lacahzaton of
diffuston: therefare, o that requon ane  abserves gt eisentially
different excitation picture than in the clazzicdl system. A decrease

ar e wath g 1: ofzerved alzo o the ol

e
4

21103l caze, due to the

T

decrease at the diffuysion rate with oy (See eq. (51 Indeed, evern in
the presence af diffuzion, the ezatatan prabatabity sbove 3 qiven
Jevel n iz nearly Zeroif at the given obzervation time 2p the diffusion
has not yet reached this n (et o << in-ngic /00, However, 1 the
qUANTUM  Cate, salated 1omzanon spkes survive an this tregquency
region due to transitions nto the continuum i antermediate resonant

leyels,

In the frequency requon wg T g the probatniity we sharply

wioreazes, because of the poscrbility of direct ane-phaton transibions,
However, ¥ n this reqion e sigmiicantly lescer than rar wy = o

whero diffusive 1atmzation occurs. In the reqion wy = W, pumerical data

zatisfactorily agree with the theoretical formuls (221 This aqreement
indicates that the Sturm b3te method or ntegration e1ncently

FEIII0E L COnTIUOUL Spetrurn etiect s, Gee slaa brg o1snd,

I Foge 1 wem e that tor oy 5500 the quantum probatnbitg o
eccitation 1c close to the classical ane; agamn, a5 in the fase of Fiq.
T, ThEs aneans that i thrs Trequency reqeon, TOr fg oo, ey 2oL,

there ro quantum delocatizaton,

At 3l snperiments e ate that o the threshody watue 0 1o




JiTusve evatation o this frequency requon Des between cood and
auaS, (P S0 In the quantum caze, upon warying £, fram L4 e 0005
the excitation probatnhity changes by about two orders of magritude.
This means that delocalization occurs already at ey = €., s0 that the
field intensity yielding 10% ionization ( which was studied in ref. {26}
will be tound to agree with classical predictions. In other words,
these numerical experiments ot ours show that labaratony experiments
f12/264 were performed in that parameter region where 1-dirn.
delocalization (and a fortiori 2 dim. delocalization) takes place, and
this explains the observed agreement with predqictions from  the
classical madel.

4.5 Stamhity of Quantum irtusion

Even though the “diffusive” iomization, taking place n the
delocalized regime, 15 to some extent <imilar to the classical
diffusion which occurs in the chactic regirme, the quantum system is
still short of exhibiting all the statistical properties that would be
expected or classical chaas,

The most striking difference is the abisence, i quanturm dynarcs,
of the strong wnstabilhity and of the rapid foss of memory associated
with classical chaos. In computer experiments this effect leads to
irreversibility, Indeed, even thaugh the exact equations of mation are
reversible, nevertheless any, however small, droprecistan in salving
them, such as, e.9.. computer round-off errors, is magnified by
expanential instatniity of artats to the extent that witial conditions
Ire ettaced and reveraility 15 theretare destroged,

Dvestigations  armed 3t wveniigng  whether an anslogous
wrreversitahity would be displayed also by the nurmericslly computsd
quantur svalition were descrited i RS tor the bicked ratator, Hers
we vl prezent numerical results tar time-reversal esperimments on
the 1~ dimensional H-atom, (Fogse 11, 120 The choasen parameter

watues e an the remon of delac hizationg theretore, up to the rmaoment



at trae-reversal v o= a0l itfusyve guobation 15 Quing an, Datho i the
quantum and in the clazzical system. Indeed, the distrmbution on the
quanturn tevels at © = G015 Cloze to the classical one, and 13 well
described by farmula  Sa), Then, at © = 60 we reversed the velocities
of all particles (N = 1000) in the classical ensemblie, and changed the
wave function aof the quantum atom to 1ts complex conjugate. In both
classical and quantum mechamcs, the H-atore would be expected to
find 1ts way back to the imtyal <tate, Howeever, due to the finite
camputer precision, in the classical case such a return s not
ubserved, The system retraces backward its history just for a few
periods or the Tield, and then, again, ditfusive excitation occurs.

Instead, in the guanturn case an almost exact reversion of mation is
qutten: at time © = 120 the electron comes back to the initial level,
Thiz 15 even more remarkable on account of the Tact that, in order to
rectare the initial state, some af the total probatility had to be calied
back fram the continuum,

The conclusion must be drawn Troro this exact reversiniity, that
eyen thaugh the quantum diffusion wich ocours n the delocahzed
regirne of the H-atom is by now the most chaotic example of quantum

mation hitherto investigated, nevertheless this quanturm “chaas” iz
essentially different from the real chaos of classical dynamics.
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5. Experimental Results

A large number of (aboratory experiments on hydrogen and 3lkah
atoms in highly excited states have been performed up to now
A12/13/22-26/. Additional interest for such experiments has recently
arisen in connection with the possibility of chaotic motion 1n quantum
mechanics. It is now passible to perform experiments on microwave
janization on atoms prepared in extended quast 1-dirn, states /23/. Here
it iz possible to measure the icnization probability identified with the
popuiation of levels higher than some sutficiently large n, including
rantinuum: this detinition 1s particulariy convenient 1or comparison with
numerical experiments. Also, it is possible to measure the probabihity
distribution an unperturted levels. This allows, In principie, for 3
careful comparison of experimental and numerical data.

In particular, very sccurate expenirments an 1-dim. H-atoms were
carried through as described in /23/. The range of parameters for these
experiments hes nside the region of low irequency (wy %= v.2) and of
classical statmhity, so that the resulfs can ndt be used as 3 test for the
theory presented in this paper,

A different semes of experniments /26/ was performed on 2-d
H-atoms. The conditions of these experiments not only lie abave the
2-dim, delocalization border, but even sbove the [-dim. one. For this
reason. our results predict an agreement with classical computations, as
indeed was round n /267, One possibie explanatian 7or the ngt complete
agreement obtained 1s that the experimental values n /Z2o/ miqth be
above but close to the detocalization border. when one should not expect
3 betfer agresment than within 3 factor 20 To cianfy this pont we show
e Fige 2o the companizon of numerical §-dine quantum and classical
1enization probabihty shightiy above the barder: there 1s a strong
excitation in both Cazes, but, unhibe strangly delocalized cases, (F1g.11a!
here the two results only 3gree within 3 S0OX,
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Jpce enperinental techiques allaw Tor very acourate messurements,
tt 13 highly dezirable that the conditions af the experiments be defined
15 precisely as possibile; Yor example 1t s more canvement to choose 3
singie excited state than a microcanonical qistnbunion, Fram aur point
af view, a most important qoal for future experiments 15 to observe and
by study the new and unexpected localization phenomenon th classically
chaotic situations, For this at 15 necessary that the frequency w, be
increased above sy =1, since n the reqion wy>! a4 large separation
between  the  classical  chaotic  threshald w_ and  the  quantum
delocahization border w, 18 expected. In the tngh frequency reqion 1t s

Alzo poszible, by varying the neld strength, to observe the transition to
Jelgralization as well a5 the other phenomena described in the present

paper.

Also, i arder to give experimental evidence for the “freezing” of the
wave packet in locahization, 1 would be desirable fo dispase of a control
ar the anteraction  time. This latter possiality hes  within the
capabilities of present Jay technique/24/.

we would ke 3150 1o stress that all the phenomena gescribed n this
paper should te observable not only wn H-atoms, but also in different
ksl stoms. In order to produce hydrogen-ltike states in such atoms, one
should  take nto account  that, the  unperturbed  spectrum for
highly-excited alkah atoms is slightly different than in H-atoms, due to
quanturn defects, However, for values of 1=3 this quanturmn defect is
negligible. Since in linearly polarized fields the magnetic guantum
number m 15 3 canstant o1 the mation, by exciting states with m = 24t
PLOpnasible o eacite Srates with (=3, which correspond very well to the
hydragenic sttuation. It 15 then pessible to consider glzo 1-dinensionsl

states by exoting levels wath mz3, n. = O, ny o= n\[ml-l g this

eacrtstion can b actneved g hight-imduced resonant tranations, one
would then get a  cituation i owhich localhizatian and other effects of
quanturn chans mught be 2tudied,




FIGURES CAPTION

Fig. | lomzation probatility W, as a function of time © {number o
microwave periods) for the case ny =30, wo= 30, £,= 0.0?S. The solid
line is drawn according to the analytical expression (22) while the
crosses are the results of our quantum numerical computations. The
excellent agreement with the theory even Tor very large Trequencias 15 a
check ot our numercal computations 3and shows that Sturm base
efficiently takes into account the continuous spectrurm.

Fig. 2 lomzation rate versus Tield intensity for the case ny=30, wg=20,
Like in the previous fig. 1, the straight line is drawn according to the
thearetical expression (22) and the crosses are results of quantum
numerical computations. Here also notice the very good agreement
between theory and numerical resyits,

Fig. 3a Excitation probability W, cas a function of time v for the case
fg= 06, €3;=0.04, wg=2.3. The quantum numerical computations are
pertormed by using: 1) the unperturbed base witn N=192 basis set
p1genstates ( sohid hinej; 1) the Sturm base with N= 384 (dotted hine);
111} the Sturm base with N= 576 (dashed line). The fairly good agreement
of the three curves is a check of the numerical computations. The
classical ionization curve is also shown.

Fig. 3b Classical (1) and quantum (2) excitation probatility W, ¢ as a
function of time for the same case as in Fiq. 3a.

Fig. 4 CQuantum probability distributions Tin) aver the unperturbed states
averagqed aver 00 values of T=wt/20 within the interval A<= 120,
Here ng=id, =004, wy=1.5. Three different curves are plotted
carresponding to integration i Sturrn base with a basis set or N= 354
ng N=576 basis funcrions and nteqration in unperturbed base with N=
192, The three curves are so close that are not resolved in the graph and
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Fig. & Clazsical yomzation probatihity W, o after t=40 wy a5 1 funihon
of the microwave frequency for different microwave infensities. Here
W 15 the total probatality atove the action value n =1.5ng. (X} €
=0.02; () €y 0,030 (0) €5 = 0,04; (& ) £g = 0.05; () ¢4 =0.06,

Fig. & Classical (-} and quantum(-} probability distribution Tln) averaged
over 40 values of v within the nterval Go<z<120, Here ny= 100,
=0, w150 For these parameter values, JALIL and therefore baoth
classical and quantum packets are localized. Notice the small tunneling
thraugh the classical KA invariant curves,

Mg, 7 Tlassical { datted curve) and quantum (<oltd curve! prabability
distribution Tln) averaged dver 40 periods of ¥ for the case ng = A6, wy =
250 kg =004 Fig. V3 average within the interval &0=t<120: Fig. 7b
average within the anterval So0<v<609. The dashed hne n both Tigures
represent the anatytical solution (Sa) of the Fokker-Planck eguation
whith fairly aqree with the ¢lassical numerical results. On the contrary,
the quantum distribution is localized and do net change sigmficantly by
increasing the imteraction time with the microwave from 120 fo 600,
The anly difference, 3c expected, 1s the slight increases in the peaks of
the small muitiphatan plateaw,

Fig. & 3econd moment M =<(n-<n=¥>/ng® af the classical (solid line)
and quantum (3ashed hne) Mstribution as function af nime T=wt/21 for
the same paremeters of fig. 7. The localization of the guantum packet
shown an the previous fiQ.7 leads here to the suppression of the
diffusive growth of the mament M,.

Fig. 3 Normahzed average distance RL==20t)n," of the electron from
the nueleus 32 3 function of ¢ for the =ame caze 33 in Frgo 70 (dotled
frne) Quanturn 03 1t hined clazsical case. Alzo here the quanturn

suppressian ot JIrfgsion 14 Clegrty mamiress,

gt Lecalizaton Jength 32 3 function of Dield ntensity far ditferent

parameters values The dots tortespond tu numencally messured wabues




of 1 which are in guad agreement with the sohid curve Qiven by the
analytical estimate (13}

Fig. 11a Classical () and quantum () distribution function Tin) averaged
over 40 values of t in the interval 40 <t<8Q. Here ng= 100, wq=1.5, €¢=
0,08. Natice the fairly good agreement between classical and quantum
numerical results and the analytical solution given by eq. (5a) { ).

Fig. 11b Probability distribution over the unperturbed states at tv=120
for the case of fig. Ila, after reversal of velocitiesa at ©=00. Notice
that the quantum system (open lozenges) recovers s nitial state to
seventeen d191ts which COrresponds to numerical errars. In contrast, the
classical motion (solid lozenges) proceeds according to the diffusion
equation (Sa) (squares).

Fig. 12 Claasical (solid lozenges) and quantum (open lozenges) ionization
probability (excitation above the unperturted level n=150) as & function
of time for the case of fig 11b. Notice the perfect specular simmetry of
the quantum curve about the trme of reversal T=p0.

Fig. 13 Excitation probability at time v= 60 as a function of the field
intensity for different values of ng and wq. W(€g) = W %€/ W flie i) is
the quantum excitation probability at e, rescaled to the corresponding
classical excitation probability computed at égz¢fh € z€g/egt ! 15 Tield

the rescaled field intensity. (&) ng=30, wy=3; (.) ng=45, we=1; () ny=45,
wy=3; (6 dN=60, We=1; (+) NE=B0, wy=2; (x) NY=B8, we=3; (0) Np= 1YY, wWe=3.
The tact that all pointe coresponding to different ng and wy meet at the
walue W =1 for é=1 is a numerical verification of our estimate {15} 1t
slzo verifies that, an the delocalized regime, the quantum excitation
probatnlity 15 close to the ciassical value.

Fig. 14a Quantura probatility distribution Tin) averaged aver 60 periods
of ¢ within the interyal 60-t<120, Here ng=6o, wy=z2, and ;=007
(N 14310 eg=008N0. 14a2); €p=0.14 (g, 14al),
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Frg. 14b Zame 3¢ Fig. 143 with ng= 100, we=3, and ¢g=00n (g, 14bin
fp=U b TN 14D gm0l (NG, 1403,

Fig. 1% Extitation probabihty W, o a3 a function af frequency w, at
anofel ngE45 Lo

wacal erditation

r=40 for frzed g, - 0004 and for different ng. i) ngs
nE=nt; 4 ng= 109, The sohd line qives the @l
propatmity, Hatioe  that, by ncreasing o, the  quanturm exitanion
probathity becomes much less than the corresponding clazsical ane due
to the fact that the delocabzation border (e 1Shncrestes with oy,

Fig. 16 cuantum probatelity distribution flnd averaged aver 40 periogs
of ¢ the anteryal 40 <p <80 Tar fived eqznad, w07, and different
Ng- Fig. 163 ng=100 (. _1, ng=dd (- =) Frg, 16b ng=dS (L _iong= 200i-
-3 The classical probamhty gistripution 15 3ln shovenn— =)0 [ order
to compare the quanturm distributions wath different ng wth the
classinal one, we have introduced rescaled quantities = (ng/ael T and n
= {B6/ng) n. The scaling property of the quantum distrtwtion ang the
fairly good agreement with the classical motion s due to the

delacalization phenormenan,

Fig. |7 Fine structure of the dependence of excitation prpbatnhity W o
on frequency iy at T=40 for fixed ¢,=0.04. (0} ng=4%S; (¢ np=1o0; O

classical results,

Fig. |5 Iomzation probatiivty W :EmF lcn|3 versus Tield frequencly vy

after a time v = 40w, which correcponds to the <ame real physical time

tofor Al frequencies, ‘we have et ngsAn, fq=008, neEe Mareiver,

gquantum  theory (e classical theary dod Hotize that oy, vz here
somewhat 1ess than ny/l becanse, an our defimban of the wmzation

prababibity, the contribution af states with r=n s 3l inciuded,

Frg, 19 Same s fid T wath ngs 2o, e =000 h, 0oz,
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Frg. 2o Ulaastcal L) and quanturn (+) excitation probatility as a functian
of time for ng=66, €;=0.04, wy= 0.43. The quantum system is delocalized
but smce we are anly shightly above the border, the quantum excitation
1S 1ess than the classical ane.

——




6. Conclusions and recommendations

The study of the 1-31im H atom in 3 manochromatic hield that we have
described in the present paper brings into the hght a number of facts -
zome of which were rather unexpected.

These facts concern both the actual physics of atoms in microwave
felds, and the qeneral problem of qQuanturm dynarmics wn the reqian of
classically chaotic mation. Even though the unperturbed eigenfunctions.
35 well a3 the matnx elements or the perturbation, can be well
approximated by theiwr sermclassical expressians, 11 rmay well happen
that gquantum and classical time evolutions are essentially different, due
to the phenomenon of quantum localization of chaos, It 15 nteresting to
note that mnvestigations of this phenoraenon were prompted by studies on
the rotator model 74/, It is a remarkable fact that this phenomenaon,
originally detected in 3 somewhat artificial model, has now been showrn
to exist in 3 physical system. so that there ic a real possibility to
nbzerve 1t n laboratory expeniments |

Cn the other hand, for the H atorn also a delocalization regime exists,
and our theory allows determination of the threshald for thiz reqime,
Above this threshold, the excitation of the quantum system can be
approximately described by the classical diffusive excitation. This
reqime of excitation is much mare efficient than the direct 1-phatan
jonization: therefore 3 new freguency threshold for the photaelectric
erfect appears, which 15 determined by classical border for rrequency,
T Actually there are Twa different frequency thrasholis w, and w,

o that strong domzstion occurs anly for o <aeden. The latter

.

threshold w s due o quantum localization of clazsicsl chaos,

The delocahization phenomenon explain: the partial success ot
classrcal computations in reproducing experimental results on microwawe
i zation, At the same time, however, the localization phenomenon cets
defirate hirmts to the applicatahity of classical medels, whch are due to
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quanturn locahization,

Although a discussion of the two-dim. case was given in sec. 2.2,
the bulk ot the resuits presented n this paper were related to the
one-dimensional case. While this fact does not certairly affect their
conceptual importance, it enforces some caution when comparing them
with experiments hiterto performed. Indeed, an analysis of the
experiments described in /4?/ shows that a three-dimensional theory is
required to model thern properiy. A different series of experiments/23/
is amenable to a one-dimensional description, but here a static electric
Tield €, collinear with the microwave Tield was present during the whaole

time of the experiment. In order to correctly model these experiments
we ought to add a term ze, in our Hamiltonian. The numerical study of

the resulting quantum dynamice presents some technical difficulty,
because it seems to call for 3 finer description of continuocus spectrum
than allowed by the method exploited here. Perhaps recourse to more
sophisticated numerical methods will prove necessary but, in our
opinion, the basic gqualitative picture of localization-delocalization will
not change.

Delocalization is also a challenging subject for future theoretical
analysis. This phenomenon has been predicted on the grounds of
semiclassical arguments, which are best suited to make contact with
classical chaotic behaviour. Nevertheless, it should be possible to
understand it in purely quantum terms. A first step in this direction may
be provided by a recent result/43/ that a qualitative change occurs in
the numerically computed quasi-energy eigenfunctions of the one-dim.
proplem.

A few concluding remarks are 1n order concerning the relatianship
of results described in this paper to the general themes of guantum
chaos. As we have seen, diffusive excitation and ionization are brought
about in the classical hydragen atom by the onset of dynamical chaas,
which 12 a3 regime of extreme instability of trajectories of the electron.
A physically relevant question that we have answered abiove, 15 whether

e/ aad

Mmoo




and 50 on - survive also in the guantum domain. However. the mare
specutative question may be posed, whether aiso anything of fthe
CONCeptual setup ot ciassical chaos - nstabihity, arreversamnty, and <o
on - can be translated in a quantum context. An 1llustration was given 1n
thiz paper (sec. 3.5 that this is nat the case. However sumilar the
quanturn evolution may appear to the classical (nsofar as the populabon
of levels is concerned) it remains strongly stable, in sharp contrast to
the latter. Therefore, even though classical chaos was shawn to be
relevant in predicting e response of a guantum hydrogen atem to an
external microwave Tield, 1t must be stressed again that, strctly
speaking, no true chaos 1s possible 10 quantum mechanics,

we shall now discuss how the results of our investigations modify
the general picture of quantum chaos, as we have sketched it in sec. 1.
Indeed, we believe that in the light of these findings of ours some
previously accepted views must now be moditied; at the same time, new
developments appear now possible, which hopefully will shed light an
s0me as yet scarcely understood phenomena in atamic physics,

uur study about the possibihity of chaotic diviusion o quantum
periamcaliy perturbed systems |ed us to definmte predictions on the
existence of a localization-delocalization mechanism. Further theoreticsl
analysis and expenmental wark is required in arder that this mechanism
m3ay enter the domain of physically ascertained facts, and indeed work 15
in progress in both directions. Meanwhile, we wish to stress that our
thearetical views yield considerable clarification in an otherwise very
confused state of affairs. Indeed, judging by current literature and
recent international meetings, scCientists working on time-dependent
provlems can be roughly devided in twa categoenes, [n the first of these
we classify thoze with a rmore or 1ess negative attitude 1n regard af the
pozsabiiity that some chaotic effects may survive 1 Quanturn Machanics,
It ancludes mardy people that at some stage of thewr sorentifie work
pecame acquainted with the Kicked rotator, or with related models, and
ave therefure a direct experience of the stubbarn resvstence offered by
thiz guantum object te any attempt at introducing chaos tn it These
people ususlly dewelop a thearetical attitude aocording to which the




quantura suppressian of dynarmical chaos 15 not qust an artefact of a
yueer, highiy non-generic model but has deep roots in the very
Toundations of quantum Mechamcs. Typical representatives of ths class
were Hogg and Huberman, who even telt justinied in dilating the rotor’s
stability into a general law, according to which any quanturmn system
subject to a periodic perturbation would exhibit a strongly recurrent
behaviour, with the only possible exception of non-generic resonant
situations.

Even though this contention of Hogg and Hutierman {7} turned out to te
an erroneus ane - we were indeed able to prave that the rotor itself can
be nonrecurrent without being resonant {10] - nevertheless it prompted
important developments. The ciaimed impossibility that penodically
perturbed quantum systems may follow classical chaotic patterns was
assimilated by Fishman, Grempel and Prange (8] to another more firmly
estahlished quantum impassibility, namely, that a quantum particle in a
disordered static potential may ever escape to infinity. As a matter of
fact, it is well known that such a particle will stay localized, due to a
complicated interference effect. Fishman, Grempel and Prange were able
to establish a formal connection between time dependent problems and
Incalization problems on disordered lattices, that proved very usetul.

It is interesting to note that people in this first class who entered
the H-atom problem, at least initially were rather skeptical about the
possibility that anything like a chaotic ionization may exist in the real
quantum H atom, and considered it almost obvious that some more or
less severe limitations would be imposed by quantum effects on the
chaotic diffusion. (Blumel and Smilanski, [36] Shepelyansky. [11).

A somewhat specular attitude 1s displayed bty workers who enter
Quantum Chans Just because of their invalvment in microwave 1onmzation,
Being aware of the partial cuccess of classical computations n
reproducing experimental data, and relying on the correspondence
principle, they hardly realize that 3 theoretical scheme oniginally
introduced Tor the exotic kicked rotor provides elements aiso for a
quanturm theory of the H atom.

According to our results, both positions a2 partiatly justified. The
locahization-delocahzation  mechamsm  provides ndeed 3 key to
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understand how quanturn liratations of olazzical chads can sametime:
Teave room for seemingly diffusive exitation processes even in quantum
dynamics. Much wark 1s now required in order to give 1irm gqround to our
theoretical resuits, [n the tirst place, our theary of the delocalizanion
phenomenon 15 essentially & semiclassical one. It would be nice to
understand ting phenomenon in purely quantum terms, i.e., by making a:=
little use a3 possible of the underlying classical diffusive picture. In
this way the possibility could be investigated, that a similar quantum
inztatility occurs in different sttuations for which no classical snalog 13
available-e.q., in problemsz of nuclear physics.

The best approach towards a purely quantum theory of delocalization
1% the  spectral analysis of  the  quasi-energy  engenvalues  ang
eigenfunctions. Interesting results in this sense were recently obtained
by Blumel and 3milansky (48] who performed a numerical computation of
quasi-energy eigenfunctions for several feld parameters and were able
tn detect an abrupt change in their chape acrass some threshold. We are
currently investigating  the possible  connnection:  between  this
phenamennn and delocalization,

Another ynportant question 1s how our theory shoutd be modiiied in
arder to apply alzo an the reahistic case of 3 3 dumensional atom. A
F-dimensions numerically solvable quantum model is then needed,
allowing for 3 careful analyziz of the locahization phenomenon an 3
dimensionas. we have already some theoretical estimates, according to
which the qualitative picture showld not be different from the | dim.
case. we are alzo waorking on a numerical raodel, which 1s still, howevar,
in 3 prefliminary stage.

Insotar as our theory justifies the use of classical concepts under
appropriate conditions, 1t can be considered as 3 theorefical expianation
of the previously detected phenormenon of underthreshald ranization. on
the ather hand, the Tocshizatwn phenomenan tn the hydrogen atom s
rracrovave Tield 15 3 relevant predicton af ours thit has not get been
subjected to experimental tests, Moreover, according to aur views, J
san oaf the omzatian as 3 fonction of ricrowave frequency should
expuie 3 bid, =harply defined peak 1n the reqion af Tow fregquency 1 this,
a0, SN T ecpenment sl veni i atan,
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In order that a detarled laboratory chech can be made, we should
inctude in our model seme minor modifications accounting for certain
detatls of the actual experimental setup. ftor example, n actual
axperiments hydrogen atoms are submitted to the combdined action ot the
microwave field and of a static electric field. Even though the latter
should not essentially modify the localization-delocalization picture,
including it into the numerical madel requires great care and calls for
extreme computer performances.

In drawing a final balance of a three-years activity, we do not
certainly feel like stating that the major problems in the solution of
which we purported to contribute have been given 3 Tinal answer
whatever,

Nevertheless, we believe that the world-wide research activity on the
role of chaos in Quantum Mechanics, in which we have teen contributing,
Is now entering an almost unexplored reatm of microphysics, of great
potential relevance and immediate physical interest.
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8. Appendixes

Appendix 1 : Quasy Classical Matrix Elements 1n Faratohc Coardinates.

We shall here get the expressgion for the 2z coordinate in parabolic
action-angle variables (ny, ny m, hy Ay, P To this end we introduce
the parabelic coordinates &,1,$:

- Fvom A N
w3 (EM) cosd
gz A (2T s L
2= (£-1)72
In these coordinates the unperturbed Harmiltanian takes the form:
He 2E/080m) pg? +2n/(Eem) pyd ¢ V(28T pg? -2/ (Zem) {1.2)
The transformation to action-angle variables (ny,n,mA AP is

achieved by separation of variables in the Hamilton -Jacobi equation for
which ye refer to standard textbooks ( see e.g. 30). Here we just recall

that the generating function of this transforration is found to be:
g m
Sny,npm, &1, 0= [ Ppdd + [F’T‘ am’ -my {1.2)

where the canonical momenta P, Pn » P are given by/30/:

Fe= [E/2% Byse - mivags] 12
: I2v padn smidand |1
F M €42 foad ) -M=s 4 N ]

Fo=m

"

Byo= L [ m ] F N PR (P !m[ E=-1:2n°




Then the angle variables Ay, A,

)\"2 = aS/an1,2 (1-4)
can be obtained by differentiating (1.3) and computing the integrals. The
procedure 15 greatly simphified by the introduction of the auxiliary

angles X q,X; defined by

2220 g sin Ky ¢ 2ning ¢+ [m|/2)

{1.5)
n=-2nd gy sin Xy + 2ndny ¢ [m]|/2).
where the parameters u,.u; are given by:
Wz = [0y, I - ngq)/n2]t2
In this way we get the following result:
Ay =g Xy - upcos Xp - Xy
‘L.e)
Ap = 7 My C0S Xy - Yo 00s Xo - Xa
From (1.5} we qet the following expression for z:
2= 142 (2-mi = n¥uy sin Xo - wy sin X e ning - oyl (1.7

The toordinate z can be expanded 10 a double Fourner seres an the
angles A\, with coefficients 2y k, diven by:

- T T “tlkyhy 7 kzhg
;km-_|d.ﬂ.|_|d,u.329 TRade T Fala



We now subshitute (L70 for 2 an this nteqrsl, and change integration
variables to . i, by using (L.6). Thus we find:

2n  Zn
- 1k Rt Egha)
\_k‘L: L +

= n¢ [dx‘ [d;{z Dixy 12 (ps s ¥, - g sin X de
o wu

g <o) Sk, ok,

Evaluating the double integral in (L8Y yields formulas (1dl in the text.

Appendix II: Solution aof the Fokker-Flanck equation.
in arder to solve £q. (4) with the boungary condition 31/an| - =0,

we shall first perform some change of variables. First of a1l putting
Tz oegtnfuy’ Y yrndng, the Fokker-Planck equation takes the form:

ar(y,©)/3T = 379y (y3a1/dy)

Mow let’s change again variables to 2 = y™'/Z and let’s introduce 3 new
function giz,T) according to =22 g. This function g must then satisfy:

QAT = L1/ AgdAz + (1742)09/32 - 11729 g
andgats Laplace Transtorm QUDe3) st LATVLTY The equatian
AT PEURCREIE Fied BTV ERX DR PAce NS EY IRV ISR BN

Acturther rhange oo Lybdee, b oz s ey




DEgAaE o (1) 3/ - (1eddwd) g = - 01/8) glu0) (1.1

By the same changes of variables we rind that, 1n order that T satisfies
the boundary condition 31/3n| - =0, § must satisry:

3q(x,s)/8x | .o = ~(2/x) g(X. s} , where X = 2(s ng/n)"2  (11.2)
The general integral of eq. (I1.1) can be written as

g=ALx +BKy(x)+ 7

where [, K, are... , A B are numerical canstants and § 1s 2 particular
ntegra) that can be determined e. g. by Lagrange’'s method:
%

g =Lk (A - 11/8) | wglx.0) Kplx)dx] +
" (L3)

¢ Kalx) (B + (1/3) [ x'9(x,0) [p(x )’
1]

The constants AB can then be chosen so that the boundary condition
(I1.21 is satisfred. Indeed, upon substituting (IL3} into (IL.2) we get:

g90:4,8) = K, (2) L)/, (173 fg(x‘,O)Iz(x’)x'dx‘ +

T ! {I1.4)

B PR VES! ' BIERU I RNE T P NACYR A VLS| (qi:v;'.\'_x)l;,\'x')x’njx‘

IINCE PR 2000 Tygdy e It Chndse QUa) i Thie torm ades Rt -,

Then the azymptotic:s of (L4 for ¢ -» e ang fived y has the form:

'J" e S l“"“’ | IR ; ’v""l‘l R R N v"/ - \]’




Pt i Tl
v orpl24 8ird 2/ 5= 1)
whence 1t 1ollows

Ty,s) = 102 3 s Lemplaa/s(1e 1/ y-2/ /s

S=F »

sexpl24/ 01/ y-1)]1

£q. (S3) in the text easily Tollows from the 135t formula,

Appendix I111: Estimate for the Delocahization Border.,

Let’'s evatuate the Znd mament af the distribution aver the tevils:
My = <(aAn)?> = <in-«<n>)¥>, From the dJiffusion eguation we get
approximately

dfdt <fAn¥s = <D=z angdsin/ng)® » L)
where a= 2 £52wg ' >, The equation for the 1st moment gives

d=n>/dt = (3 3 ng/ 2} <(n/ngi?> {111.2}

In order to solve (IL1) and (111.2) we will use a rough approsimation,
namely, we will substitute for noite mean value <n=. Doing sa, and
performng the inteqration, we obtamn

wre = nglt-3ar /2!

{ ANz ng?{1-Tar 0247

Tror tacabization condifion 7 = o <A~ = o 1Y qives an equation Tor

IJ
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t, the least root of which determines the localization length 1:
(nge/3) 1(1-31a/2) % -1] = v¥/at (111.3)
} =t/

A straigthforward manipulation gives then formulas (132), (14).

Appendix IV: A Method for computing Hypergeometric functions.

The numenical computations of matrnix elements 1n (32) 2 presents
some technical difficulty since a direct expansion of hypergeometric
functions in series of powers of -4nng/(n-ng)? doesn’t give correct
values of B for n~s ~ 100 due strong cancellations of different terms

and finite computer precision. Therefore in order to compute the
hypergeometric function F we used a different method based on the
recursion farmulas between values of F for three consecutive values s-1,
, s+1 ( see, e.0./39/). The methad is essentially as Tollows:

we take two values of F for s=0, s=1 and then we recurrently
determine all f up to s=ny = n . after that we take two arbitrary values

for F, and Fo . for 5 =m and s=m+1 where m >>s .~ was chosen (for

example m % 5 S max } and recurrently determined values of F far n3-|0<

5 < m . These latter values of F differ from the actual ones only by a
numerical factor ¢. The value of this constant was obtained by

comparison with F computed for s< n,. For different values s< n. the
constant cop was obtained with a precision ~ 10710 Arter taking into
account this constanl factor we qot precise values of Ffor O<s<s .,

which dide’t change upon chanqing the arbitrary values FoooFp o
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